Phasmarhabditis hermaphrodita – a new model to study the genetic evolution of parasitism

in Nematology
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.

Help

 

Have Institutional Access?

Login with your institution. Any other coaching guidance?

Connect

The evolutionary genetic mechanisms that are responsible for the transition of free-living nematodes to parasites are unknown and current nematode models used to study this have limitations. The gastropod parasite Phasmarhabditis hermaphrodita could be used as a new model to dissect the molecular mechanisms involved in the evolution of parasitism. Phasmarhabditis hermaphrodita is a facultative parasite of slugs and snails that, like Caenorhabditis elegans and Pristionchus pacificus, can also be maintained easily under laboratory conditions. Phasmarhabditis hermaphrodita and Phasmarhabditis species are easy to isolate from the wild and have been found around the world. The phylogenetic position of Phasmarhabditis is ideal for genomic comparison with other clade 9 species such as C. elegans and P. pacificus, as well as mammalian and insect parasites. These attributes could make P. hermaphrodita an excellent choice of model to study the evolutionary emergence of parasitism.

Phasmarhabditis hermaphrodita – a new model to study the genetic evolution of parasitism

in Nematology
Sections
References
  • AbebeE.JumbaM.BonnerK.GrayV.MorrisK.KellyW.T. (2010). An entomopathogenic Caenorhabditis briggsae. Journal of Experimental Biology 2133223-3229. DOI: 10.1242/jeb.043109

    • Search Google Scholar
    • Export Citation
  • AboobakerA.A.BlaxterM.L. (2003). Use of RNA interference to investigate gene function in the human filarial nematode parasite Brugia malayi. Molecular & Biochemical Parasitology 12941-51. DOI: 10.1016/S0166-6851(03)00092-6

    • Search Google Scholar
    • Export Citation
  • AndrássyI. (1983). A taxonomic review of the suborder Rhabditina (Nematoda: Secernentia). Paris, FranceOffice de la Recherche Scientifique et Technique, Outre-Mer.

    • Search Google Scholar
    • Export Citation
  • AzzamK.M. (2003). Description of the nematode Phasmarhabditis tawfiki n. sp. isolated from Egyptian terrestrial snails and slugs. Journal of the Egyptian German Society for Zoology 4279-87.

    • Search Google Scholar
    • Export Citation
  • BaiX.AdamsB.J.CicheT.A.CliftonS.GauglerR.KimK.-S.SpiethJ.SternbergP.W.WilsonR.K.GrewalP.S. (2013). A lover and a fighter: the genome sequence of an entomopathogenic nematode Heterorhabditis bacteriophora. PLoS One 8(7) e69618. DOI: 10.1371/journal.pone.0069618

    • Search Google Scholar
    • Export Citation
  • BaileyS.E.R.CairnsA.LathamR.Abdel KasiM.ManningP. (2003). Onset of immobilization on the slug Deroceras reticulatum Müller parasitized by the nematode Phasmarhabditis hermaphrodita Schneider. In: Slugs and snails: agricultural veterinary and environmental perspectives. Alton Hampshire UK British Crop Protection Council (BCPC) Symposium Proceedings No. 80 pp. 215-220.

  • BargmannC.I.HartwiegE.HorvitzH.R. (1993). Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell 74515-527. DOI: 10.1016/0092-8674(93)80053-H

    • Search Google Scholar
    • Export Citation
  • BlaxterM.KoutsovoulosG. (2015). The evolution of parasitism in Nematoda. Parasitology 142S26-S39. DOI: 10.1017/S0031182014000791

  • BlaxterM.L.De LeyP.GareyJ.R.LiuL.X.ScheldemanP.VierstraeteA.VanfleterenJ.R.MackeyL.Y.DorrisM.FrisseL.M. (1998). A molecular evolutionary framework for the phylum Nematoda. Nature 39271-75. DOI: 10.1038/32160

    • Search Google Scholar
    • Export Citation
  • BrennerS. (1974). The genetics of Caenorhabditis elegans. Genetics 7771-94.

  • CarnaghiM.RaeR.Bistline-EastA.CareyJ.JohnstonE.KindermannG.McDonnellR.O’HanlonA.ReichI.ShearanJ. (2017). Nematode associates and susceptibility of a protected slug (Geomalacus maculosus) to four biocontrol nematodes. Biocontrol Science and Technology1-10. DOI: 10.1080/09583157.2016.1277418

    • Search Google Scholar
    • Export Citation
  • Cold Spring Harbor Laboratory Archives Repository (2017). “126. N Isolation.” Brenner S. (2017). Reference SB/6/5/126 available online at http://libgallery.cshl.edu/items/show/75709 (accessed 19 January 2017).

  • CouplandJ.B. (1995). Susceptibility of helicid snails to isolates of the nematode Phasmarhabitis hermaphrodita from southern France. Journal of Invertebrate Pathology 66207-208. DOI: 10.1006/jipa.1995.1088

    • Search Google Scholar
    • Export Citation
  • DankowskaE. (2006). Laboratory studies on the use of a nematode Phasmarhabditis hermaphrodita (Schneider) in slug control. Folia Malacologica 1461-62. DOI: 10.12657/folmal.014.009

    • Search Google Scholar
    • Export Citation
  • De BonoM.BargmannC.I. (1998). Natural variation in a neuropeptide Y receptor homolog modifies social behaviour and food response in C. elegans. Cell 94679-689. DOI: 10.1016/s0092-8674(00)81609-8

    • Search Google Scholar
    • Export Citation
  • DeNardoE.A.B.SindermannA.B.GrewalS.K.GrewalP.S. (2004). Non-susceptibility of earthworm Eisenia fetida to the rhabditid nematode Phasmarhabditis hermaphrodita, a biological agent of slugs. Biocontrol Science and Technology 1493-98. DOI: 10.1080/0958315031000151693

    • Search Google Scholar
    • Export Citation
  • DieterichC.CliftonS.W.SchusterL.N.ChinwallaA.DelehauntyK.DinkelackerI.FultonL.FultonR.GodfreyJ.MinxP. (2008). The Pristionchus pacificus genome provides a unique perspective on nematode lifestyle and parasitism. Nature Genetics 401193-1198. DOI: 10.1038/ng.227

    • Search Google Scholar
    • Export Citation
  • DillmanA.R.MacchiettoM.PorterC.F.RogersA.WilliamsB.AntoshechkinI.LeeM.-M.GoodwinZ.LuX.LewisE.E. (2015). Comparative genomics of Steinernema reveals deeply conserved gene regulatory networks. Genome Biology 16200. DOI: 10.1186/s13059-015-0746-6

    • Search Google Scholar
    • Export Citation
  • EsterA.Rozen VanK.MolendijkL.P.G. (2003a). Field experiments using the rhabditid nematode Phasmarhabditis hermaphrodita or salt as control measures against slugs in green asparagus. Crop Protection 22689-695. DOI: 10.1016/S0261-2194(03)00003-6

    • Search Google Scholar
    • Export Citation
  • EsterA.HuitingH.F.MolendijkL.P.G.VlaswinkelM.E.T. (2003b). The rhabditid nematode Phasmarhabditis hermaphrodita Schneider as a potential biological agent to control field slugs Deroceras reticulatum (Müller) in Brussels sprouts. In: Slugs and snails: agricultural veterinary and environmental perspectives. Alton Hampshire UK British Crop Protection Council (BCPC) Symposium Proceedings No. 80 pp. 313-318.

  • EsterA.van RozenK.HazendonkA. (2003c). Efficacy of pesticides to control Lehmannia valentiana (Ferussac) in orchids (Cymbidium) in greenhouse experiments. In: Slugs and snails: Agricultural veterinary and environmental perspectives. Alton Hampshire UK British Crop Protection Council (BCPC) Symposium Proceedings No. 80 pp. 89-94.

  • FoltanP.PuzaV. (2009). To complete their life cycle, pathogenic nematode-bacteria complexes deter scavengers from feeding on their host cadaver. Behavioural Processes 8076-79. DOI: 10.1016/j.beproc.2008.09.012

    • Search Google Scholar
    • Export Citation
  • FranceA.GerdingM. (2000). Discovery of Phasmarhabditis hermaphrodita in Chile and its pathological differences with the UK isolate in slug control. Journal of Nematology 32430.

    • Search Google Scholar
    • Export Citation
  • FrezalL.FelixM.A. (2015). The natural history of model organism: C. elegans outside the Petri dish. eLife 4e05849. DOI: 10.7554/elife.05849

    • Search Google Scholar
    • Export Citation
  • GeldhofP.MurrayL.CouthierA.GilleardJ.S.McLauchlanG.KnoxD.P.BrittonC. (2006). Testing the efficacy of RNA interference in Haemonchus contortus. International Journal for Parasitology 36801-810. DOI: 10.1016/j.ijpara.2005.12.004

    • Search Google Scholar
    • Export Citation
  • GeldhofP.VisserA.ClarkD.SaundersG.BrittonC.GilleardJ.BerrimanM.KnoxD. (2007). RNAi interference in parasitic helminths: current situation, potential pitfalls and future prospects. Parasitology 134609-619. DOI: 10.1017/s0031182006002071

    • Search Google Scholar
    • Export Citation
  • GenenaM.A.M.MostafaF.A.M.FoulyA.H.YousefA.A. (2011). First record of the slug parasitic nematode, Phasmarhabditis hermaphrodita (Schneider) in Egypt. Archives of Phytopathology and Plant Protection 44340-345. DOI: 10.1080/03235400903057662

    • Search Google Scholar
    • Export Citation
  • GlenD.M.WilsonM.J.HughesL.CargeegP.HajjarA. (1996). Exploring and exploiting the potential of the rhabditid nematode Phasmarhabditis hermaphrodita as a biocontrol agent for slugs. In: Slugs and snails in agriculture. Farnham UK British Crop Protection Council (BCPC) Symposium Proceedings No. 66 pp. 271-280.

  • GlenD.M.WiltshireC.W.HughesL.EsterA.Van RozenK.CastillejoJ.IglesiasJ.SpeiserB.CouplandJ.GwynnR. (2000). The use of slug-parasitic nematodes and other techniques for control of slug and snail damage in horticultural crops. In: Pests and Disease. Alton Hampshire UK British Crop Protection Council (BCPC) Symposium Proceedings pp. 345-350.

  • GrewalP.S.GrewalS.K.TanL.AdamsB.J. (2003). Parasitism of molluscs by nematodes: types of associations and evolutionary trends. Journal of Nematology 35146-156.

    • Search Google Scholar
    • Export Citation
  • GrewalS.K.GrewalP.S. (2003). Survival of earthworms exposed to the slug-parasitic nematode Phasmarhabditis hermaphrodita. Journal of Invertebrate Pathology 8272-74. DOI: 10.1016/s0022-2011(02)00200-8

    • Search Google Scholar
    • Export Citation
  • GrewalS.K.GrewalP.S.TaylorR.A.J.HammondR.B. (2001). Application of molluscicidal nematodes to slug shelters: a novel approach to economic biological control of slugs. Biological Control 2272-80. DOI: 10.1006/bcon.2001.0958

    • Search Google Scholar
    • Export Citation
  • GrewalS.K.GrewalP.S.HammondR.B. (2003). Susceptibility of North American native and non-native slugs (Mollusca: Gastropoda) to Phasmarhabditis hermaphrodita (Nematoda: Rhabditidae). Biocontrol Science and Technology 13119-125. DOI: 10.1080/0958315021000054449

    • Search Google Scholar
    • Export Citation
  • GrimmB. (2002). Effect of the nematode Phasmarhabditis hermaphrodita on young stages of the pest slug Arion lusitanicus. Journal of Molluscan Studies 6825-28. DOI: 10.1093/mollus/68.1.25

    • Search Google Scholar
    • Export Citation
  • HapcaS.BudhaP.CrawfordJ.YoungI. (2007a). Movement of Phasmarhabditis hermaphrodita nematode in a structurally heterogeneous structure. Nematology 95731-738. DOI: 10.1163/156854107782024811

    • Search Google Scholar
    • Export Citation
  • HapcaS.CrawfordJ.RaeR.WilsonM.YoungI. (2007b). Movement of the parasitic nematode Phasmarhabditis hermaphrodita in the presence of the slug Deroceras reticulatum. Biological Control 41223-229. DOI: 10.1016/j.biocontrol.2007.01.005

    • Search Google Scholar
    • Export Citation
  • HarveyS.C.VineyM.E. (2007). Thermal variation reveals natural variation between isolates of Caenorhabditis elegans. Journal of Experimental Zoology 308409-416. DOI: 10.1002/jez.b.21161

    • Search Google Scholar
    • Export Citation
  • HassB.HughesL.A.GlenD.M. (1999). Overall versus band application of the nematode Phasmarhabditis hermaphrodita with and without incorporation into soil, for biological control of slugs in winter wheat. Biocontrol Science and Technology 9579-586. DOI: 10.1080/09583159929532

    • Search Google Scholar
    • Export Citation
  • HerrmannM.MayerW.E.SommerR.J. (2006). Nematodes of the genus Pristionchus are closely associated with scarab beetles and the Colorado potato beetle in Western Europe. Zoology 10996-108. DOI: 10.1016/j.zool.2006.03.001

    • Search Google Scholar
    • Export Citation
  • HongR.L.WitteH.SommerR.J. (2008). Natural variation in Pristionchus pacificus insect pheromone attraction involves the protein kinase EGL-4. Proceedings of the National Academy of Sciences of the United States of America 1057779-7784. DOI: 10.1073/pnas.0708406105

    • Search Google Scholar
    • Export Citation
  • HooperD.J.WilsonM.J.RoweJ.A.GlenD.M. (1999). Some observations on the morphology and protein profiles of the slug parasitic nematodes Phasmarhabditis hermaphrodita and P. neopapillosa (Nematoda: Rhabditidae). Nematology 1173-182. DOI: 10.1163/156854199508144

    • Search Google Scholar
    • Export Citation
  • HuangR.-E.YeW.RenX.ZhaoZ. (2015). Morphological and molecular characterization of Phasmarhabditis huizhouensis sp. nov. (Nematoda: Rhabdididae), a new rhabditid nematode from South China. PLoS One. DOI: 10.1371/journal.pone.0144386

    • Search Google Scholar
    • Export Citation
  • HusseinA.S.KicheninK.SelkirkM.E. (2002). Suppression of secreted acetylcholinesterase expression in Nippostrongylus brasiliensis by RNA interference. Molecular & Biochemical Parasitology 12291-94. DOI: 10.1016/s0166-6851(02)00068-3

    • Search Google Scholar
    • Export Citation
  • IglesiasJ.SpeiserB. (2001). Consumption rate and susceptibility to parasitic nematodes and chemical molluscicides of the pest slugs Arion hortensis and A. distinctus. Journal of Pesticide Science 74159-166. DOI: 10.1046/j.1439-0280.2001.01037.x

    • Search Google Scholar
    • Export Citation
  • IglesiasJ.CastillejoJ.CastroR. (2003). The effect of repeated applications of the molluscicides metaldehyde and the biocontrol nematode Phasmarhabditis hermaphrodita on molluscs, earthworms, nematodes, acarids and collembolans: a two year study in North West Spain. Pest Management Science 591217-1224. DOI: 10.1002/ps.758

    • Search Google Scholar
    • Export Citation
  • IslamM.K.MiyoshiT.YamadaM.TsujiN. (2005). Pyrophosphate of the roundworm Ascaris suum plays an essential role in the worm’s moulting and development. Infection and Immunity 731995-2004. DOI: 10.1128/iai.73.4.1995-2004.2005

    • Search Google Scholar
    • Export Citation
  • KarimiJ.Kharazi-PakadelA.RobertS.J. (2003). Report of pathogenic nematodes from slugs, Phasmarhabditis hermaphrodita (Nematoda: Rhabditida) in Iran. Journal of Entomological Society of Iran 2277-78.

    • Search Google Scholar
    • Export Citation
  • KiontkeK.SudhausW. (2006). Ecology of Caenorhabditis species. In: The C. elegans Research Community (Ed.). WormBook. DOI: 10.1895/wormbook.1.141.1

    • Search Google Scholar
    • Export Citation
  • KiontkeK.BarriereA.KolotuevI.PodbilewiczB.SommerR.FitchD.H.A.FelixM.A. (2007). Trends, stasis and drift in the evolution of nematode vulva development. Current Biology 171925-1937. DOI: 10.1016/j.cub.2007.10.061

    • Search Google Scholar
    • Export Citation
  • KumarS.SchifferP.H.BlaxterM. (2012). 959 Nematode genomes: a semantic wiki for coordinating sequencing projects. Nucleic Acids Research 401295-1300. DOI: 10.1093/nar/gkr826

    • Search Google Scholar
    • Export Citation
  • LoT.-W.PickleC.S.LinS.RalstonE.J.GurlingM.SchartnerC.M.BianQ.DoudnaJ.A.MeyerB.J. (2013). Precise and heritable genome editing in evolutionary diverse nematodes using TALENs and CRISPR/Cas9 to engineer insertions and deletions. Genetics 195331-348. DOI: 10.1534/genetics.113.155382

    • Search Google Scholar
    • Export Citation
  • LokJ.B. (2007). Strongyloides stercoralis: a model for translational research on parasitic nematode biology. In: The C. elegans Research Community (Ed.). WormBook. DOI: 10.1895/wormbook.1.141.1

    • Search Google Scholar
    • Export Citation
  • LokJ.B.UnnaschT.R. (2013). Transgenesis in animal parasitic nematodes: Strongyloides spp. and Brugia spp. In: The C. elegans Research Community (Ed.). WormBook. DOI: 10.1895/wormbook.1.141.1

    • Search Google Scholar
    • Export Citation
  • LudewigA.H.SchroederF.C. (2013). Ascaroside signalling in C. elegans. In: The C. elegans Research Community (Ed.). WormBook. DOI: 10.1895/wormbook.1.141.1

    • Search Google Scholar
    • Export Citation
  • MacMillenK.HaukelandS.RaeR.G.YoungI.M.CrawfordJ.W.HapcaS.WilsonM.J. (2009). Dispersal patterns and behaviour of the nematode Phasmarhabditis hermaphrodita in mineral soils and organic media. Soil Biology and Biochemistry 411483-1490. DOI: 10.1016/j.soilbio.2009.04.007

    • Search Google Scholar
    • Export Citation
  • MarinF.LuquetG. (2004). Molluscan shell proteins. Comptes Rendus Palevol 3469-492. DOI: 10.1016/j.crpv.2004.07.009

  • MaupasE. (1900). Modes et formes de reproduction des nématodes. Archives de Zoologie Expérimentale et Générale 8463-624.

  • MayerM.G.SommerR.J. (2011). Natural variation in Pristionchus pacificus dauer formation reveals cross-preference rather than self-preference of nematode dauer pheromones. Proceedings of the Royal Society B: Biological Sciences 2782784-2790. DOI: 10.1098/rspb.2010.2760

    • Search Google Scholar
    • Export Citation
  • McGaughranA.SommerR.J. (2013). Natural variation in cold tolerance in the nematode Pristionchus pacificus: the role of genotype and environment. Biology Open 3832-838. DOI: 10.1242/bio.20148888

    • Search Google Scholar
    • Export Citation
  • MengertH. (1953). Nematoden und Schneken. Zeitschrift fur Morphologie und Ökologie der Tiere 41311-349.

  • MitrevaM.JasmerD.P. (2006). Biology and genome of Trichinella spiralis. In: The C. elegans Research Community (Ed.). WormBook. DOI: 10.1895/wormbook.1.141.1

    • Search Google Scholar
    • Export Citation
  • MorandS.WilsonM.J.GlenD.M. (2004). Nematodes (Nematoda) parasitic in terrestrial gastropods. In: BarkerG.M. (Ed.). Natural enemies of terrestrial molluscs. Wallingford, UKCABI Publishing pp.  525-557. DOI: 10.1079/9780851993195.0525

    • Search Google Scholar
    • Export Citation
  • MorganK.MacGaughranA.VillateL.HerrmannM.WitteH.BartelmesG.RochatJ.SommerR.J. (2012). Multi-locus analysis of Pristionchus pacificus on La Réunion island reveals an evolutionary history shaped by multiple introductions, constrained dispersal events, and rare outcrossing. Molecular Ecology 21250-266. DOI: 10.1111/j.1365-294x.2011.05382.x

    • Search Google Scholar
    • Export Citation
  • MorleyN.J.MorritD. (2006). The effects of the slug biological control agent, Phasmarhabditis hermaphrodita (Nematoda) on non-target aquatic molluscs. Journal of Invertebrate Pathology 92112-114. DOI: 10.1016/j.jip.2006.04.001

    • Search Google Scholar
    • Export Citation
  • Nermut’J.PůžaV.MráčekZ. (2010). The first report on the slug parasitic nematode Phasmarhabditis hermaphrodita (Nematoda: Rhabditidae) in the Czech Republic. In: 30th International Symposium of the European Society of Nematologists Vienna Austria p.  56.

    • Search Google Scholar
    • Export Citation
  • Nermut’J.PůžaV.MráčekZ. (2012). The response of Phasmarhabditis hermaphrodita (Nematoda: Rhabditidae) and Steinernema feltiae (Nematoda: Steinernematidae) to different host-associated cues. Biological Control 61201-206. DOI: 10.1016/j.biocontrol.2012.02.009

    • Search Google Scholar
    • Export Citation
  • Nermut’J.PůžaV.MráčekZ. (2014). The effect of different growing substrates on the development and quality of Phasmarhabditis hermaphrodita (Nematoda: Rhabditidae). Biocontrol Science and Technology 241026-1038. DOI: 10.1080/09583157.2014.915926

    • Search Google Scholar
    • Export Citation
  • Nermut’J.PůžaV.MráčekZ. (2016a). Phasmarhabditis apuliae n. sp. (Nematoda: Rhabditidae), a new rhabditid nematode from milacid slugs. Nematology 181095-1112. DOI: 10.1163/15685411-00003017

    • Search Google Scholar
    • Export Citation
  • Nermut’J.PůžaV.MeketeT.MráčekZ. (2016b). Phasmarhabditis bonaquaense n. sp. (Nematoda: Rhabditidae), a new slug-parasitic nematode from the Czech Republic. Zootaxa 4179530-546. DOI: 10.11646/zootaxa.4179.3.8

    • Search Google Scholar
    • Export Citation
  • Nermut’J.PůžaV.MeketeT.MráčekZ. (2017). Phasmarhabditis bohemica n. sp. (Nematoda: Rhabditidae), a slug-parasitic nematode from the Czech Republic. Nematology 1993-107. DOI: 10.1163/15685411-00003034

    • Search Google Scholar
    • Export Citation
  • OkonjoE.AchiengG.AdundoJ.OjowiD.BayoJ. (2015). Evaluation of the beneficial nematode Phasmarhabditis hermaphrodita in the control of Biomphalaria pfeifferi. African Journal of Health Sciences 28168-170.

    • Search Google Scholar
    • Export Citation
  • PechovaH.FoltanP. (2008). The parasitic nematode Phasmarhabditis hermaphrodita defends its slug host from being predated or scavenged by manipulating host spatial behaviour. Behavioural Processes 78416-420. DOI: 10.1016/j.beproc.2008.02.011

    • Search Google Scholar
    • Export Citation
  • PetersenC.HermannR.J.BargM.C.SchalkowskiR.DirksenP.BarbosaC.SchulenburgH. (2015). Travelling at a slug’s pace: possible invertebrate vectors of Caenorhabditis nematodes. BMC Ecology 1519. DOI: 10.1186/s12898-015-0050-z

    • Search Google Scholar
    • Export Citation
  • PoulinR. (1998). Evolutionary ecology of parasites-from individuals to communities. London, UKChapman & Hall.

  • RaeR.SommerR.J. (2011). Bugs don’t make worms kill. Journal of Experimental Biology 2141053. DOI: 10.1242/jeb.052480

  • RaeR.VerdunC.GrewalP.S.RobertsonJ.F.WilsonM.J. (2007). Biological control of terrestrial molluscs using Phasmarhabditis hermaphrodita – progress and prospects. Pest Management Science 631153-1164. DOI: 10.1002/ps.1424

    • Search Google Scholar
    • Export Citation
  • RaeR.G.RobertsonJ.F.WilsonM.J. (2005). Susceptibility of indigenous UK earthworms and an invasive pest flatworm to the slug parasitic nematode Phasmarhabditis hermaphrodita. Biocontrol Science and Technology 15623-626. DOI: 10.1080/09583150500086870

    • Search Google Scholar
    • Export Citation
  • RaeR.G.RobertsonJ.F.WilsonM.J. (2006). The chemotactic response of Phasmarhabditis hermaphrodita (Nematoda: Rhabditidae) to cues of Deroceras reticulatum (Mollusca: Gastropoda). Nematology 8197-200. DOI: 10.1163/156854106777998746

    • Search Google Scholar
    • Export Citation
  • RaeR.G.RobertsonJ.F.WilsonM.J. (2008). Susceptibility and immune response of Deroceras reticulatum, Milax gagates and Limax pseudoflavus exposed to the slug parasitic nematode Phasmarhabditis hermaphrodita. Journal of Invertebrate Pathology 9761-69. DOI: 10.1016/j.jip.2007.07.004

    • Search Google Scholar
    • Export Citation
  • RaeR.G.RobertsonJ.F.WilsonM.J. (2009). Chemoattraction and host preference of the gastropod parasitic nematode Phasmarhabditis hermaphrodita. Journal of Parasitology 95517-526. DOI: 10.1645/ge-1637.1

    • Search Google Scholar
    • Export Citation
  • RaeR.G.TournaM.WilsonM.J. (2010). The slug parasitic nematode Phasmarhabditis hermaphrodita associates with complex and variable bacterial assemblages that do not affect its virulence. Journal of Invertebrate Pathology 104222-226. DOI: 10.1016/j.jip.2010.04.008

    • Search Google Scholar
    • Export Citation
  • RagsdaleE.KanzakiN.HerrmannM. (2015). Taxonomy and natural history: the genus Pristionchus. In: SommerR.J.HuntD.J.PerryR.N.). Leiden, The NetherlandsBrill pp.  77-120. DOI: 10.1163/9789004260306_005

    • Export Citation
  • RatnappanR.VadnalJ.KeaneyM.EleftherianosI.O’HalloranD.HawdonJ.M. (2016). RNAi-mediated gene knockdown by microinjection in the model Entomopathogenic nematode Heterorhabditis bacteriophora. Parasites and Vectors 9160. DOI: 10.1186/s13071-016-1442-4

    • Search Google Scholar
    • Export Citation
  • ReadD.S.SheppardS.K.BrufordM.W.GlenD.M.SymondsonW.O.C. (2006). Molecular detection of predation by soil micro-arthropods on nematodes. Molecular Ecology 151963-1972. DOI: 10.1111/j.1365-294x.2006.02901.x

    • Search Google Scholar
    • Export Citation
  • RockmanM.V.KruglyakL. (2009). Recombinational landscape and population genomics of Caenorhabditis elegans. PLoS Genetics 5e1000419. DOI: 10.1371/journal.pgen.1000419

    • Search Google Scholar
    • Export Citation
  • RossJ.L.IvanovaE.S.SpiridonovS.E.WaeyenbergeL.MoensM.NicolG.W.WilsonM.J. (2010). Molecular phylogeny of slug-parasitic nematodes inferred from 18SrRNA gene sequences. Molecular Phylogenetics and Evolution 55738-743. DOI: 10.1016/j.ympev.2010.01.026

    • Search Google Scholar
    • Export Citation
  • RossJ.L.IvanovaE.S.SirgelW.F.MalanA.P.WilsonM.J. (2012). Diversity and distribution of nematode associated with terrestrial slugs in Western Cape Province of South Africa. Journal of Helminthology 86215-221. DOI: 10.1017/s0022149x11000277

    • Search Google Scholar
    • Export Citation
  • RossJ.L.IvanovaE.S.HattelandB.A.BrurbergM.B.HaukelandS. (2015). Survey of nematodes associated with terrestrial slugs in Norway. Journal of Helminthology 281-5. DOI: 10.1017/s0022149x15000784

    • Search Google Scholar
    • Export Citation
  • ScheilA.E.HilsmannS.TriebskornR.KohlerH.R. (2014). Shell colouration and parasite tolerance in two helicoid snail species. Journal of Invertebrate Pathology 1171-8. DOI: 10.1016/j.jip.2014.01.003

    • Search Google Scholar
    • Export Citation
  • SchneiderA. (1859). Über eine Nematodenlarvae und gewisse Verschiedenheiten in den Geschlechtsorganen der Nematoden. Zeitschrift für wissenschaftliche Zoologie 10176-178.

    • Search Google Scholar
    • Export Citation
  • SchulteF. (1989). The association between Rhabditis necromena Sudhaus and Schulte, 1989 (Nematoda: Rhabditidae) and native and introduced millipedes in South Australia. Nematologica 3582-89. DOI: 10.1163/002825989x00089

    • Search Google Scholar
    • Export Citation
  • SommerR.J. (Ed.) (2015). Pristionchus pacificus: a nematode model for comparative and evolutionary biology. In: Hunt D.J. & Perry R.N. (Eds). Nematode Monographs and Perspectives 11. (Series Editors Hunt D.J. & Perry R.N.). Leiden The Netherlands Brill.

  • SommerR.J.CarmiI.EizingerA.GrandienK.JungblutB.LeeK.Z.NguyenH.Pires de SilvaA.SchlakI.SigristC.B. (2000). Pristionchus pacificus: a satellite organism in evolutionary developmental biology. Nematology 281-88. DOI: 10.1163/156854100508791

    • Search Google Scholar
    • Export Citation
  • SpeiserB.ZallerJ.G.NewdeckerA. (2001). Size-susceptibility of the pest slugs Deroceras reticulatum and Arion lusitanicus to the nematode biocontrol agent Phasmarhabditis hermaphrodita. Biocontrol 46311-320.

    • Search Google Scholar
    • Export Citation
  • SudhausW. (1993). Redescription of Rhabditis (Oscheius) tipulae (Nematoda: Rhabditidae) associated with leatherjackets, larvae of Tipula paludosa (Diptera: Tipulidae). Nematologica 39234-239. DOI: 10.1163/187529293x00187

    • Search Google Scholar
    • Export Citation
  • TalwanaH.SibandaZ.WanjohiW.KimenjuW.Luambano-NyoniN.MassaweC.Manzanilla-LópezR.H.DaviesK.G.HuntD.J.SikoraR.A. (2016). Agricultural nematology in East and Southern Africa: problems, management strategies and stakeholder linkages. Pest Management Science 72226-245. DOI: 10.1002/ps.4104

    • Search Google Scholar
    • Export Citation
  • TanL.GrewalP.S. (2001). Pathogenicity of Moraxella osloensis, a bacterium associated with the nematode Phasmarhabditis hermaphrodita, to the slug Deroceras reticulatum. Applied Environmental Microbiology 675010-5016. DOI: 10.1128/aem.67.11.5010-5016.2001

    • Search Google Scholar
    • Export Citation
  • Tandingan De LeyI.HolovachovO.McDonnellR.J.BertW.PaineW.De LeyP. (2016). Description of Phasmarhabditis californica n. sp. and first report of P. papillosa (Nematoda: Rhabditidae) from invasive slugs in the USA. Nematology 18175-193. DOI: 10.1163/15685411-00002952

    • Search Google Scholar
    • Export Citation
  • Tandingan De LeyI.T.McDonnellR.D.LopezS.PaineT.D.De LeyP. (2014). Phasmarhabditis hermaphrodita (Nematoda: Rhabditidae), a potential biocontrol agent isolated for the first time from invasive slugs in North America. Nematology 161129-1138. DOI: 10.1163/15685411-00002838

    • Search Google Scholar
    • Export Citation
  • van MegenH.van den ElsenS.HoltermanM.KarssenG.MooymanP.BongersT.HolovachovO.BakkerJ.HelderJ. (2009). A phylogenetic tree of nematodes based on about 1200 full-length small subunit ribosomal DNA sequences. Nematology 11927-950. DOI: 10.1163/156854109x456862

    • Search Google Scholar
    • Export Citation
  • VineyM.E.LokJ.B. (2007). Strongyloides spp. In: The C. elegans Research Community (Ed.). WormBook. DOI: 10.1895/wormbook.1.141.1

  • VineyM.E.GreenL.D.BrooksJ.A.GrantW.N. (2002). Chemical mutagenesis of the parasitic nematode Strongyloides ratti to isolate ivermectin resistant mutants. International Journal of Parasitology 321677-1682. DOI: 10.1016/s0020-7519(02)00157-1

    • Search Google Scholar
    • Export Citation
  • WakiT. (2017). Diversity of terrestrial mollusks and their helminths in artifical environments in Yoyogi Park, Tokyo, Japan. Journal of Asia-Pacific Biodiversity in press. DOI: 10.1016/j.japb.2016.12.002

    • Search Google Scholar
    • Export Citation
  • WeischerB.BrownD.J.F. (2000). An introduction to nematodes – general nematology. Sofia, BulgariaPensoft.

  • WhitakerG.RaeR. (2015). The gastropod parasitic nematode Phasmarhabditis hermaphrodita does not affect non-target freshwater snails Lymnaea stagnalis, Bithynia tentaculata and Planorbarius corneus. Nematology 17679-683. DOI: 10.1163/15685411-00002900

    • Search Google Scholar
    • Export Citation
  • WilliamsA.J.RaeR. (2015). Susceptibility of the Giant African snail (Achatina fulica) exposed to the gastropod parasitic nematode Phasmarhabditis hermaphrodita. Journal of Invertebrate Pathology 127122-126. DOI: 10.1016/j.jip.2015.03.012

    • Search Google Scholar
    • Export Citation
  • WilliamsA.J.RaeR. (2016). Cepaea nemoralis (Linnaeus, 1758) uses its shell as a defense mechanism to trap and kill parasitic nematodes. Journal of Molluscan Studies. DOI: 10.1093/mollus/ey064

    • Search Google Scholar
    • Export Citation
  • WilsonM.J. (2012). Pathogens and parasites of terrestrial molluscs. In: LaceyL.A. (Ed.). Manual of techniques in invertebrate pathology. San Diego, USAAcademic Press pp.  429-441. DOI: 10.1016/b978-0-12-386899-2.00013-0

    • Search Google Scholar
    • Export Citation
  • WilsonM.J.RaeR. (2015). Phasmarhabditis hermaphrodita as a control agent for slugs. In: Campos-HerreraR. (Ed.). Nematode pathogenesis of insects and other pests. Basel, SwitzerlandSpringer pp.  509-521. DOI: 10.1007/978-3-319-18266-7_21

    • Search Google Scholar
    • Export Citation
  • WilsonM.J.GlenD.M.GeorgeS.K. (1993a). The rhabditid nematode Phasmarhabditis hermaphrodita as a potential biological control agent for slugs. Biocontrol Science and Technology 3503-511. DOI: 10.1080/09583159309355306

    • Search Google Scholar
    • Export Citation
  • WilsonM.J.GlenD.M.GeorgeS.K.ButlerR.C. (1993b). Mass cultivation and storage of the rhabditid nematode Phasmarhabditis hermaphrodita, a biocontrol agent of slugs. Biocontrol Science and Technology 3513-521. DOI: 10.1080/09583159309355307

    • Search Google Scholar
    • Export Citation
  • WilsonM.J.GlenD.M.GeorgeS.K.PearceJ.D.WiltshireC.W. (1994). Biological control of slugs in winter wheat using the rhabditid nematode Phasmarhabditis hermaphrodita. Annals of Applied Biology 125377-390. DOI: 10.1111/j.1744-7348.1994.tb04978.x

    • Search Google Scholar
    • Export Citation
  • WilsonM.J.HughesL.A.GlenD.M. (1995a). Developing strategies for the nematode Phasmarhabditis hermaphrodita as a biological control agent for slugs in integrated crop management systems. In: Integrated crop protection: towards sustainability? British Crop Protection Council (BCPC) No. 63 pp. 33-40.

  • WilsonM.J.GlenD.M.GeorgeS.K.PearceJ.D. (1995b). Selection of a bacterium for the mass production of Phasmarhabditis hermaphrodita (Nematoda: Rhabditidae) as a biocontrol agent for slugs. Fundamental and Applied Nematology 18419-425.

    • Search Google Scholar
    • Export Citation
  • WilsonM.J.GlenD.M.GeorgeS.K.PearceJ.D. (1995c). Monoxenic culture of the slug parasite Phasmarhabditis hermaphrodita (Nematoda: Rhabditidae) with different bacteria in liquid and solid phase. Fundamental and Applied Nematology 18159-166.

    • Search Google Scholar
    • Export Citation
  • WilsonM.J.HughesL.A.JefferiesD.GlenD. (1999). Slugs (Deroceras reticulatum and Arion ater agg.) avoid soil treated with the rhabditid nematode Phasmarhabditis hermaphrodita. Biological Control 16170-176. DOI: 10.1006/bcon.1999.0757

    • Search Google Scholar
    • Export Citation
  • WilsonM.J.HughesL.A.HamacherG.M.GlenD.M. (2000). Effects of Phasmarhabditis hermaphrodita on non-target molluscs. Pest Management Science 56711-716. DOI: 10.1002/1526-4998(200008)56:8<711::AID-PS185>3.0.CO;2-O

    • Search Google Scholar
    • Export Citation
  • WilsonM.J.BurchG.TournaM.AaldersL.T.BarkerG.M. (2012). The potential of a New Zealand strain of Phasmarhabditis hermaphrodita for biological control of slugs. New Zealand Plant Protection 65161-165.

    • Search Google Scholar
    • Export Citation
  • WilsonM.J.IvanovaE.S.SpiridonovS.E. (2015). Born to be wild – don’t forget the invertebrates. Trends in Parasitology 31530-532. DOI: 10.1016/j.pt.2015.09.002

    • Search Google Scholar
    • Export Citation
  • WilsonM.J.WilsonD.J.AaldersL.T.TournaM. (2016). Testing a new low-labour method for detecting the presence of Phasmarhabditis spp. in slugs in New Zealand. Nematology 18925-931. DOI: 10.1163/15685411-00003005

    • Search Google Scholar
    • Export Citation
  • WitteH.MorenoE.RodelspergerC.KimJ.KimJ.-S.StreitA.SommerR.J. (2015). Gene inactivation using the CRISPR/Cas9 system in the nematode Pristionchus pacificus. Development Genes and Evolution 22555-62. DOI: 10.1007/s00427-014-0486-8

    • Search Google Scholar
    • Export Citation
  • WynneR.MorrisA.RaeR. (2016). Behavioural avoidance by slugs and snails of the parasitic nematode Phasmarhabditis hermaphrodita. Biocontrol Science and Technology 161129-1138. DOI: 10.1080/09583157.2016.1185513

    • Search Google Scholar
    • Export Citation
  • YeW.Torres-BarraganA.CardozaY.J. (2010). Oscheius carolinensis n. sp. (Nematoda: Rhabditidae), a potential entomopathogenic nematode from vermicompost. Nematology 12121-135. DOI: 10.1163/156854109X458464

    • Search Google Scholar
    • Export Citation
Index Card
Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 152 146 18
Full Text Views 209 209 2
PDF Downloads 16 16 1
EPUB Downloads 0 0 0