Life history traits of the free-living nematode, Plectus acuminatus Bastian, 1865, and responses to cadmium exposure

in Nematology
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?


Free-living nematodes are ubiquitous and play an essential role in ecosystems. However, little is known about their standard life history traits (LHTs), which limits their inclusion in estimations of energy flows and carrying capacities of ecosystems, as well as in modelling population-level responses to toxicants. Thus, we used the hanging-drop method to measure LHTs of Plectus acuminatus with and without exposure to cadmium (2 mg l−1). In controls, the mean lifespan was 68 days and the maximum 114 days. Individuals laid eggs on average 19 days after hatching, while production of offspring peaked at 37 days. Plectus acuminatus individuals were very fertile, producing on average 848 juveniles. Population growth rate of 0.19 was estimated for the control cohort leading to an average population doubling time of 3.65 days. Exposure to cadmium reduced mean lifespan by 62% and affected reproduction as only 22% of individuals produced offspring, leading to a total fertility rate 85% lower than in controls.


International Journal of Fundamental and Applied Nematological Research



AddisT.TeshomeA.StrauchO.EhlersR.-U. (2014). Life history trait analysis of the entomopathogenic nematode Steinernema riobrave. Nematology 16, 929-936. DOI: 10.1163/15685411-00002819

AddisT.DemissieS.StrauchO.EhlersR.-U. (2016a). Influence of bacterial density and mating on life history traits of Heterorhabditis bacteriophora. Nematology 18, 963-972. DOI: 10.1163/15685411-00003008

AddisT.MijuškovićN.StrauchO.EhlersR.-U. (2016b). Life history traits, liquid culture production and storage temperatures of Steinernema yirgalemense. Nematology 18, 367-376. DOI: 10.1163/15685411-00002966

AddisT.TeshomeA.StrauchO.EhlersR.-U. (2016c). Life history trait analysis of the entomopathogenic nematode Steinernema feltiae provides the basis for prediction of dauer juvenile yields in monoxenic liquid culture. Applied Microbiology and Biotechnology 100, 4357-4366. DOI: 10.1007/s00253-015-7220-y

AyubF.StrauchO.SeychellesL.EhlersR.-U. (2013). Influence of temperature on life history traits of the free-living, bacterial-feeding nematode Panagrolaimus sp. strain NFS-24. Nematology 15, 939-946. DOI: 10.1163/15685411-00002732

AyubF.StrauchO.SeychellesL.EhlersR.-U. (2014). Influence of cell density of Escherichia coli and the dinoflagellate Crypthecodinium cohnii on life history traits of the nematode Panagrolaimus sp. strain NFS 24-5, a potential larval food for marine aquaculture. Nematology 16, 419-426. DOI: 10.1163/15685411-00002774

BarbutoM.ZulliniA. (2006). Moss inhabiting nematodes: influence of the moss substratum and geographical distribution in Europe. Nematology 8, 575-582. DOI: 10.1163/156854106778614065

BongersT.BongersM. (1998). Functional diversity of nematodes. Applied Soil Ecology 10, 239-251. DOI: 10.1016/S0929-1393(98)00123-1

BrinkeM.HeiningerP.TraunspurgerW. (2011). A semi-fluid gellan gum medium improves nematode toxicity testing. Ecotoxicology and Environmental Safety 74, 1824-1831. DOI: 10.1016/j.ecoenv.2011.07.007

BrinkeM.HeiningerP.TraunspurgerW. (2013). Effects of a bioassay-derived ivermectin lowest observed effect concentration on life-cycle traits of the nematode Caenorhabditis elegans. Ecotoxicology 22, 148-155. DOI: 10.1007/s10646-012-1011-3

CaughleyG.BirchL.C. (1971). Rate of increase. The Journal of Wildlife Management 35, 658-663.

CharlesworthB. (1994). Evolution in age-structured populations. Cambridge, UK, Cambridge University Press.

ForbesV.E.OlsenM.PalmqvistA.CalowP. (2010). Environmentally sensitive life-cycle traits have low elasticity: implications for theory and practice. Ecological Applications 20, 1449-1455. DOI: 10.1890/09-1063.1

GilarteP.Kreuzinger-JanikB.MajdiN.TraunspurgerW. (2015). Life-history traits of the model organism Pristionchus pacificus recorded using the hanging drop method: comparison with Caenorhabditis elegans. PLoS ONE 10, e0134105.

GoussenB.BeaudouinR.DutilleulM.Buisset-GoussenA.BonzomJ.-M.PéryA.R.R. (2015). Energy-based modelling to assess effects of chemicals on Caenorhabditis elegans: a case study on uranium. Chemosphere 120, 507-514. DOI: 10.1016/j.chemosphere.2014.09.006

HarmensH.NorrisD.A.KoerberG.R.BuseA.SteinnesE.RühlingÅ. (2008). Temporal trends (1990-2000) in the concentration of cadmium, lead and mercury in mosses across Europe. Environmental Pollution 151, 368-376. DOI: 10.1016/j.envpol.2007.06.043

IlyinI.BergT.DutchakS.PacynaJ. (2004). Heavy metals. In: LövbladG.TarrasónL.TørsethK.DutchakS. (Eds). EMEP assessment, part 1, European perspective. Oslo, Norway, Norwegian Meteorological Institute.

JagerT.KlokC. (2010). Extrapolating toxic effects on individuals to the population level: the role of dynamic energy budgets. Philosophical Transactions of the Royal Society of London B: Biological Sciences 365, 3531-3540. DOI: 10.1098/rstb.2010.0137

JagerT.AlvarezO.KammengaJ.E.KooijmanS. (2005). Modelling nematode life cycles using dynamic energy budgets. Functional Ecology 19, 136-144. DOI: 10.1111/j.0269-8463.2005.00941.x

KagoshimaH.KitoK.AizuT.Shin-IT.KandaH.KobayashiS.ToyodaA.FujiyamaA.KoharaY.ConveyP. (2013). Multi-decadal survival of an Antarctic nematode, Plectus murrayi, in a −20°C stored moss sample. Cryoletters 33, 280-288.

KammengaJ.E.RiksenJ.A.G. (1996). Comparing differences in species sensitivity to toxicants: Phenotypic plasticity versus concentration-response relationships. Environmental Toxicology and Chemistry 15, 1649-1653. DOI: 10.1002/etc.5620150931

KammengaJ.E.GestelC.A.M.BakkerJ. (1994). Patterns of sensitivity to cadmium and pentachlorophenol among nematode species from different taxonomic and ecological groups. Archives of Environmental Contamination and Toxicology 27, 88-94. DOI: 10.1007/BF00203892

KammengaJ.E.BusschersM.Van StraalenN.M.JepsonP.C.BakkerJ. (1996). Stress-induced fitness reduction is not determined by the most sensitive life-cycle trait. Functional Ecology 10, 106-111. DOI: 10.2307/2390268

KammengaJ.E.Van KoertP.H.G.KoemanJ.H.BakkerJ. (1997). Fitness consequences of toxic stress evaluated within the context of phenotypic plasticity. Ecological Applications 7, 726-734. DOI: 10.1890/1051-0761(1997)007[0726:FCOTSE]2.0.CO;2

LampertW.SommerU.HaneyJ.F. (1997). Limnoecology: the ecology of lakes and streams. New York, NY, USA, Oxford University Press.

LancasterJ.D.MohammadB.AbebeE. (2012). Effect of the bacterium Serratia marcescens SCBI on the longevity and reproduction of the nematode Caenorhabditis briggsae KT0001. BMC Research Notes 5, 688. DOI: 10.1186/1756-0500-5-688

LewisJ.A.FlemingJ.T. (1995). Basic culture methods. In: EpsteinH.F.ShakesD.C. (Eds). Caenorhabditis elegans: modern biological analysis of an organism. Methods in Cell Biology, vol. 48. San Diego, CA, USA, Academic Press, pp.  3-29.

LiW.-H.JuY.-R.LiaoC.-M.LiaoV.H.-C. (2014). Assessment of selenium toxicity on the life cycle of Caenorhabditis elegans. Ecotoxicology 23, 1245-1253. DOI: 10.1007/s10646-014-1267-x

LockK.JanssenC.R. (2001). Cadmium toxicity for terrestrial invertebrates: taking soil parameters affecting bioavailability into account. Ecotoxicology 10, 315-322. DOI: 10.1023/A:1016767519556

LotkaA.J. (1925). Elements of physical biology. Baltimore, MD, USA, Williams & Wilkins.

MajdiN.TraunspurgerW. (2015). Free-living nematodes in the freshwater food web: a review. Journal of Nematology 47, 28-44.

MuschiolD.TraunspurgerW. (2007). Life cycle and calculation of the intrinsic rate of natural increase of two bacterivorous nematodes, Panagrolaimus sp. and Poikilolaimus sp., from chemoautotrophic Movile Cave, Romania. Nematology 9, 271-284. DOI: 10.1163/156854107780739117

MuschiolD.SchroederF.TraunspurgerW. (2009). Life cycle and population growth rate of Caenorhabditis elegans studied by a new method. BMC Ecology 9, 14. DOI: 10.1186/1472-6785-9-14

NealD. (2004). Introduction to population biology. Cambridge, UK, Cambridge University Press.

NielsenC.O. (1949). Studies on the soil microfauna. II. The soil inhabiting nematodes. Natura Jutlandica 2, 1-131.

PtatscheckC.Kreuzinger-JanikB.PutzkiH.TraunspurgerW. (2014). Insights into the importance of nematode prey for chironomid larvae. Hydrobiologia 757, 143-153. DOI: 10.1007/s10750-015-2246-9

SandhoveJ.SpannN.RistauK. (2016). The anhydrobiotic potential of the terrestrial nematodes Plectus parietinus and Plectus velox. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology 325, 434-440. DOI: 10.1002/jez.2028

SchenkJ.TraunspurgerW.RistauK. (2016). Genetic diversity of widespread moss-dwelling nematode species in German beech forests. European Journal of Soil Biology 74, 23-31. DOI: 10.1016/j.ejsobi.2016.03.002

SchiemerF. (1983). Comparative aspects of food dependence and energetics of freeliving nematodes. Oikos 41, 32-42. DOI: 10.2307/3544343

SchiemerF.DuncanA.KlekowskiR.Z. (1980). A bioenergetic study of a benthic nematode, Plectus palustris de Man 1880, throughout its life cycle. Oecologia 44, 205-212. DOI: 10.1007/BF00346410

SohleniusB.BoströmS.HirschfelderA. (1995). Nematodes, rotifers and tardigrades from nunataks in Dronning Maud Land, East Antarctica. Polar Biology 15, 51-56. DOI: 10.1007/BF00236124

TraunspurgerW.MichielsI.C.AbebeE. (2006). Composition and distribution of free-living aquatic nematodes: global and local perspectives. In: AbebeE.TraunspurgerW.AndrássyI. (Eds). Freshwater nematodes: ecology and taxonomy. Wallingford, UK, CAB International, pp.  46-76.

WeberS.TraunspurgerW. (2016). Effects of juvenile fish predation (Cyprinus carpio L.) on the composition and diversity of free-living freshwater nematode assemblages. Nematology 18, 39-52. DOI: 10.1163/15685411-00002941

WhartonD.A. (1986). A functional biology of nematodes. London, UK, Croom Helm.


  • Survival of Plectus acuminatus in control (black circles) and cadmium-exposed (grey circles) life-cycle experiments.

    View in gallery
  • Daily rate of fertile egg oviposition of Plectus acuminatus in control (black circles) and cadmium-exposed (grey circles) life-cycle experiments. Values are mean + 1 SD.

    View in gallery
  • Fertile egg production (cumulative), with the highest value representing the total fertility rate (TFR), of Plectus acuminatus in control (black circles) and cadmium-exposed (grey circles) life-cycle experiments.

    View in gallery


Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 26 26 13
Full Text Views 9 9 3
PDF Downloads 0 0 0
EPUB Downloads 0 0 0