Nematode morphometry and biomass in the Saigon River harbours in relation to antifouling contaminants

In: Nematology
View More View Less
  • 1 Division of Environmental Quality, Atmospheric Science and Climate Change, Ton Duc Thang University, Ho Chi Minh City, Vietnam
  • 2 Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam
  • 3 Department of Environmental Management and Technology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, 85 Tran Quoc Toan Street, District 3, Ho Chi Minh City, Vietnam
  • 4 Department of Nematology, Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology
  • 5 Biology Department, Ghent University, Ledeganckstraat 35, B-9000 Gent, Belgium
  • 6 Marine Biology Research Group, Biology Department, Ghent University, Krijgslaan 281, S8, B-9000 Ghent, Belgium

Morphometry and biomass of nematode communities in different harbours of the Saigon River were investigated in the dry and wet seasons in relation to environmental variables such as total organic carbon, pH, conductivity, salinity and oxygen redox potential, in addition to concentrations of different butyltin compounds. The results indicated that nematodes in contaminated sediments from the Saigon River harbours were mainly characterised by slender morphotypes, whilst very few thin and stout nematodes were observed. Individual nematode biomass was generally low, especially in the wet season. There was no significant correlation between butyltin compounds and nematode morphometrics in the dry season but significant correlations were found for the wet season. Although significant correlations were observed for the wet season, the strong seasonal differences in nematode biomass spectra suggest a potential limitation in their use for environmental monitoring.

  • Anderson M.J., Gorley R.N., Clarke K.R. (2008). PERMANOVA+ for PRIMER: guide to software and statistical methods. Plymouth, UK, PRIMER-E.

  • Andrássy I. (1956). The determination of volume and weight of nematodes. Acta Zoologica 2, 1-15.

  • Antizar-Ladislao B. (2008). Environmental levels, toxicity and human exposure to tributyltin (TBT)-contaminated marine environment. A review. Environment International 34, 292-308.

    • Search Google Scholar
    • Export Citation
  • Asami H., Aida M., Watanabe K. (2005). Accelerated sulfur cycle in coastal marine sediment beneath areas of intensive shellfish aquaculture. Applied and Environmental Microbiology 71, 2925-2933. DOI: 10.1128/AEM.71.6.2925-2933.2005

    • Search Google Scholar
    • Export Citation
  • Austen M.C., McEvoy A.J. (1997). Experimental effects of tributyltin (TBT) contaminated sediment on a range of meiobenthic communities. Environmental Pollution 96, 435-444. DOI: 10.1016/S0269-7491(97)00036-5

    • Search Google Scholar
    • Export Citation
  • Bongers T., Alkemade R., Yeates G.W. (1991). Interpretation of disturbance-induced maturity decrease in marine nematode assemblages by means of the Maturity Index. Marine Ecology Progress Series 76, 135-142. DOI: 10.3354/meps076135

    • Search Google Scholar
    • Export Citation
  • Bongers T., De Goede R.G.N., Korthals G.W., Yeates G.W. (1995). Proposed changes of c-p classification of nematodes. Russian Journal of Nematology 3, 61-62.

    • Search Google Scholar
    • Export Citation
  • Boufahja F., Beyrem H., Essid N., Amorri J., Mahmoudi E., Aïssa P. (2007). Morphometry, energetics and diversity of free-living nematodes from coasts of Bizerte lagoon Tunisia: an ecological meaning. Cahiers de Biologie Marine 48, 121-137.

    • Search Google Scholar
    • Export Citation
  • Boufahja F., Hedfi A., Amorri J., Aïssa P., Beyrem H., Mahmoudi E. (2011). An assessment of the impact of chromium-amended sediment on a marine nematode assemblage using microcosm bioassays. Biological Trace Elements Research 142, 242-255. DOI: 10.1007/s12011-010-8762-6

    • Search Google Scholar
    • Export Citation
  • Bouwman L.A. (1983). A survey of Nematoda from the Ems estuary: species assemblages and associations. Zoologische Jahrbucher, Systematik, Okologie und Geographie der Tiere 110, 345-376.

    • Search Google Scholar
    • Export Citation
  • Chang B.V., Yu C.H., Yuan S.Y. (2004). Degradation of nonylphenol by anaerobic microorganisms from river sediment. Chemosphere 55, 493-500. DOI: 10.1016/j.chemosphere.2004.01.004

    • Search Google Scholar
    • Export Citation
  • Dang D.N., Lean D.T., Tolosa I., De Mora S.J. (2005). Occurrence of butyltin compounds in marine sediments and bivalves from three harbour areas (Saigon, Da Nang and Hai Phong) in Vietnam. Applied Organometallic Chemistry 19, 811-818. DOI: 10.1002/aoc.923

    • Search Google Scholar
    • Export Citation
  • De Grisse A.T. (1969). Redescription ou modification de quelques techniques utilisées dans l’étude des nématodes phytoparasitaires. Meded Rijksfakulteit Landbouwwetenschappen Gent 34, 351-369.

    • Search Google Scholar
    • Export Citation
  • Doong R.A., Sun Y.C., Liao P.L., Peng C.K., Wu S.C. (2002). Distribution and fate of organochlorine pesticide residues in sediments from the selected rivers in Taiwan. Chemosphere 48, 237-246. DOI: 10.1016/S0045-6535(02)00066-8

    • Search Google Scholar
    • Export Citation
  • Dubey S.K., Roy U. (2003). Biodegradation of tributyltins (organotins) by marine bacteria. ChemInform 34, 9. DOI: 10.1002/chin.200309266

  • Gibbs P.E., Bryan G.W. (1996). Reproductive failure in the gastropod Nucella lapillus associated with imposex caused by tributyltin pollution. In: Champ M.A., Seligman P.F. (Eds). Organotin: environmental fate and effects. Dordrecht, The Netherlands, Springer, pp.  259-280.

    • Search Google Scholar
    • Export Citation
  • Guilini K., Lisa A.L., Vanreusel A. (2012). Cold seep and oxygen minimum zone associated sources of margin heterogeneity affect benthic assemblages, diversity and nutrition at the Cascadian margin (NE Pacific Ocean). Progress in Oceanography 96, 77-92. DOI: 10.1016/j.pocean.2011.10.003

    • Search Google Scholar
    • Export Citation
  • Guven K., Duce J.A., de Pomerai D.I. (1994). Evaluation of a stress-inducible transgenic nematode strain for rapid aquatic toxicity testing. Aquatic Toxicology 29, 119-137. DOI: 10.1016/0166-445X(94)90052-3

    • Search Google Scholar
    • Export Citation
  • Haggera J.A., Depledge M.H., Galloway T.S. (2005). Toxicity of tributyltin in the marine mollusc Mytilus edulis. Marine Pollution Bulletin 51, 811-816.

    • Search Google Scholar
    • Export Citation
  • Heip C., Vincx M., Vranken G. (1985). The ecology of marine nematodes. In: Barnes M. (Ed.). Oceanography and marine biology, an annual review, vol. 23. Aberdeen, UK, Aberdeen University Press, pp.  399-489.

    • Search Google Scholar
    • Export Citation
  • Hodda M., Nicholas W.L. (1990). Production of meiofauna in an Australian estuary. Wetlands Australia Journal 9, 41-48.

  • Hongxia L., Guolan H., Shugui D. (1998). Toxicity and accumulation of tributyltin chloride on Tilapia. Applied Organometallic Chemistry 12, 109-119.

    • Search Google Scholar
    • Export Citation
  • Hoshi H., Kamata Y., Uemura T. (2003). Effects of 17β-estradiol, bisphenol A and tributyltin chloride on germ cells of Caenorhabditis elegans. Journal of Veterinary Medical Science 65, 881-885.

    • Search Google Scholar
    • Export Citation
  • Höss S., Weltje L. (2007). Endocrine disruption in nematodes: effects and mechanisms. Ecotoxicology 16, 15-28. DOI: 10.1007/s10646-006-0108-y

    • Search Google Scholar
    • Export Citation
  • Jensen P. (1987). Differences in microhabitat, abundance, biomass and body size between oxybiotic and thiobiotic free-living marine nematodes. Oecologia 71, 564-567. DOI: 10.1007/BF00379298

    • Search Google Scholar
    • Export Citation
  • Kannan K., Guruge K.S., Thomas N.J., Tanabe S., Giesy J.P. (1998). Butyltin residues in southern sea otters (Enhydra lutris nereis) found dead along California coastal waters. Environmental Science and Technology 32, 1169-1175.

    • Search Google Scholar
    • Export Citation
  • Langston W.J., Burt G.R., Zhou M. (1987). Tin and organotin in water, sediments and benthic organisms of Poole Harbour. Marine Pollution Bulletin 18, 634-639. DOI: 10.1016/0025-326X(87)90395-X

    • Search Google Scholar
    • Export Citation
  • Lenihan H.S., Oliver J.S., Stephenson M.A. (1990). Changes in hard bottom communities related to boat mooring and tributyltin in San Diego Bay: a natural experiment. Marine Ecology Progress Series 60, 147-159.

    • Search Google Scholar
    • Export Citation
  • Liu X.S., Zhang Z.N., Huang Y. (2007). Sublittoral meiofauna with particular reference to nematodes in the southern Yellow Sea, China. Estuarine, Coastal and Shelf Science 71, 616-628. DOI: 10.1016/j.ecss.2006.09.013

    • Search Google Scholar
    • Export Citation
  • Losi V., Moreno M., Gaozza L., Vezzulli L., Fabiano M., Albertelli G. (2013). Nematode biomass and allometric attributes as indicators of environmental quality in a Mediterranean harbour (Ligurian Sea, Italy). Ecological Indicators 30, 80-89. DOI: 10.1016/j.ecolind.2013.01.034

    • Search Google Scholar
    • Export Citation
  • Mahmoudi E., Essid N., Beyrem H., Hedfi A., Boufahja F., Vitiello P., Aissa P. (2005). Effects of hydrocarbon contamination on a free-living marine nematode community: results from microcosm experiments. Marine Pollution Bulletin 50, 1197-1204. DOI: 10.1016/j.marpolbul.2005.04.018

    • Search Google Scholar
    • Export Citation
  • Matthiessen P., Gibbs P.E. (1998). Critical appraisal of the evidence for tributyltin-mediated endocrine disruption in mollusks. Environmental Toxicology and Chemistry 17, 37-43. DOI: 10.1002/etc.5620170106

    • Search Google Scholar
    • Export Citation
  • Mayer F.L. (1987). Acute toxicity of chemicals to estuarine organisms. U.S. Environmental Protection Agency Report, 600/8-83/017.

  • Murata S., Takahashi S., Agusa T., Thomas N.J., Kannan K., Tanabe S. (2008). Contamination status and accumulation profiles of organotins in sea otters (Enhydra lutris) found dead along the coasts of California, Washington, Alaska (USA), and Kamchatka (Russia). Marine Pollution Bulletin 56, 641-649. DOI: 10.1016/j.marpolbul.2008.01.019

    • Search Google Scholar
    • Export Citation
  • Ngo X.Q., Nguyen N.C., Vanreusel A. (2014). Nematode morphometry and biomass patterns in relation to community characteristics and environmental variables in the Mekong estuaries. The Raffles Bulletin of Zoology 62, 501-512.

    • Search Google Scholar
    • Export Citation
  • Ngo X.Q., Nguyen T.M.Y., Nguyen V.D., Prozorova L., Smol N., Vanreusel A. (2017). Nematode communities in the Saigon River harbors in relation to tributyltin concentrations. Marine Biodiversity 20, 1-13. DOI: 10.1007/s12526-017-0718-z

    • Search Google Scholar
    • Export Citation
  • Peters R.H. (1983). The ecological implications of body size. Cambridge, UK, Cambridge University Press.

  • Rotterdam Convention (2009). Operation of the prior informed consent procedure for banned or severely restricted chemicals. Decision guidance documents. Tributyltin compounds. Rome, Italy, Food and Agriculture Organization of the United Nations, United Nations Environment Programme.

    • Search Google Scholar
    • Export Citation
  • Rzeznik-Orignac J., Fichet D., Boucher G. (2003). Spatio-temporal structure of nematode assemblages of the Brouage mudflat (Marennes Oléron, France). Estuarine Coastal and Shelf Science 58, 77-88. DOI: 10.1016/S0272-7714(03)00061-1

    • Search Google Scholar
    • Export Citation
  • Santillo D., Johnston P., Langston W.J. (2013). Tributyltin (TBT) antifoulants: a tale of ships, snails and imposex. In: Harremoës P., Gee D., MacGarvin M., Stirling A., Keys J., Wynne B., Guedes Vaz S. (Eds). Late lessons from early warnings: the precautionary principle 1896-2000. Copenhagen, Denmark, European Environment Agency, pp.  135-148.

    • Search Google Scholar
    • Export Citation
  • Schratzberger M. (2001). Effects of paint-derived tributyltin (TBT) on the structure of estuarine nematode assemblages in experimental microcosms. Lowestoft, UK, Centre for Environment, Fisheries and Aquaculture Science (CEFAS).

    • Search Google Scholar
    • Export Citation
  • Schratzberger M., Wall C.M., Reynolds W.J., Reed J., Waldock M.J. (2002). Effects of paint-derived tributyltin (TBT) on structure of estuarine nematode assemblages in experimental microcosms. Journal of Experimental Marine Biology and Ecology 272, 217-235. DOI: 10.1016/S0022-0981(02)00129-6

    • Search Google Scholar
    • Export Citation
  • Schratzberger M., Warr K., Rogers S.I. (2007). Functional diversity of nematode communities in the southwestern North Sea. Marine Environmental Research 63, 368-389. DOI: 10.1016/j.marenvres.2006.10.006

    • Search Google Scholar
    • Export Citation
  • Semprucci F., Frontalini F., Sbrocca C., Armynot du Châtelet E., Bout-Roumazeilles V., Coccioni R., Balsamo M. (2015). Meiobenthos and free-living nematodes as tools for biomonitoring environments affected by riverine impact. Environmental Monitoring Assessment 187, 251. DOI: 10.1007/s10661-015-4493-7

    • Search Google Scholar
    • Export Citation
  • Short J.W., Thrower F.P. (1986). Tributyltin caused mortality of Chinook salmon, Oncorhynchus tshawytscha, on transfer to TBT-treated marine net pen. In: Champ M.A. (Ed.). International organotin symposium OCEANS ’86, 23-25 September 1986. Washington, DC, USA, IEEE, pp.  1202-1205. DOI: 10.1109/OCEANS.1986.1160364

    • Search Google Scholar
    • Export Citation
  • Smol N., Willems K.A., Govaere J.C., Sandee A.J.J. (1994). Composition, distribution and biomass of meiobenthos in the Oosterschelde estuary (SW Netherlands). Hydrobiologia 282, 197-217. DOI: 10.1007/BF00024631

    • Search Google Scholar
    • Export Citation
  • Soetaert K., Muthumbi A., Heip C. (2002). Size and shape of ocean margin nematodes: morphological diversity and depth-related patterns. Marine Ecology Progress Series 242, 179-193.

    • Search Google Scholar
    • Export Citation
  • Tita G., Vincx M., Desrosiers G. (1999). Size spectra, body width and morphotypes of intertidal nematodes: an ecological interpretation. Journal of the Marine Biological Association of the UK 79, 1007-1015. DOI: 10.1017/S0025315499001241

    • Search Google Scholar
    • Export Citation
  • Unger M.A., MacIntyre W.G., Huggett R.J. (1988). Sorption behaviour of tributyltin on estuarine and freshwater sediments. Environmental Toxicology and Chemistry 7, 907-915.

    • Search Google Scholar
    • Export Citation
  • Vanaverbeke J., Steyaert M., Vanreusel A., Vincx M. (2003). Nematode biomass spectra as descriptors of functional changes due to human and natural impact. Marine Ecology Progress Series 249, 157-170.

    • Search Google Scholar
    • Export Citation
  • Vincx M. (1996). Meiofauna in marine and fresh water sediments. In: Hall G.S. (Ed.). Methods for the examination of organismal diversity in soils and sediments. Wallingford, UK, CAB International, pp.  187-195.

    • Search Google Scholar
    • Export Citation
  • Vos J.G., Dybing E., Greim H.A., Ladefoged O., Lambre C., Tarazona J.V., Brandt I., Vethaak A.D. (2000). Health effects of endocrine-disrupting chemicals on wildlife, with special reference to the European situation. Critical Reviews in Toxicology 30, 71-133. DOI: 10.1080/10408440091159176

    • Search Google Scholar
    • Export Citation
  • Waldock R., Rees H.L., Matthiesen P., Pendle M.A. (1999). Surveys of the benthic infauna of the Crouch Estuary (UK) in relation to TBT contamination. Journal of the Marine Biological Association of the UK 79, 225-232. DOI: 10.1017/S0025315497000258

    • Search Google Scholar
    • Export Citation
  • Wieser W. (1960). Benthic studies in Buzzards Bay. II. The meiofauna. Limnology and Oceanography 5, 121-137. DOI: 10.4319/lo.1960.5.2.0121

    • Search Google Scholar
    • Export Citation

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 223 108 1
Full Text Views 206 8 0
PDF Downloads 13 5 0