Nematode morphometry and biomass in the Saigon River harbours in relation to antifouling contaminants

in Nematology
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Morphometry and biomass of nematode communities in different harbours of the Saigon River were investigated in the dry and wet seasons in relation to environmental variables such as total organic carbon, pH, conductivity, salinity and oxygen redox potential, in addition to concentrations of different butyltin compounds. The results indicated that nematodes in contaminated sediments from the Saigon River harbours were mainly characterised by slender morphotypes, whilst very few thin and stout nematodes were observed. Individual nematode biomass was generally low, especially in the wet season. There was no significant correlation between butyltin compounds and nematode morphometrics in the dry season but significant correlations were found for the wet season. Although significant correlations were observed for the wet season, the strong seasonal differences in nematode biomass spectra suggest a potential limitation in their use for environmental monitoring.

Nematode morphometry and biomass in the Saigon River harbours in relation to antifouling contaminants

in Nematology

Sections

References

  • AndersonM.J.GorleyR.N.ClarkeK.R. (2008). PERMANOVA+ for PRIMER: guide to software and statistical methods. Plymouth, UKPRIMER-E.

  • AndrássyI. (1956). The determination of volume and weight of nematodes. Acta Zoologica 21-15.

  • Antizar-LadislaoB. (2008). Environmental levels, toxicity and human exposure to tributyltin (TBT)-contaminated marine environment. A review. Environment International 34292-308.

  • AsamiH.AidaM.WatanabeK. (2005). Accelerated sulfur cycle in coastal marine sediment beneath areas of intensive shellfish aquaculture. Applied and Environmental Microbiology 712925-2933. DOI: 10.1128/AEM.71.6.2925-2933.2005

  • AustenM.C.McEvoyA.J. (1997). Experimental effects of tributyltin (TBT) contaminated sediment on a range of meiobenthic communities. Environmental Pollution 96435-444. DOI: 10.1016/S0269-7491(97)00036-5

  • BongersT.AlkemadeR.YeatesG.W. (1991). Interpretation of disturbance-induced maturity decrease in marine nematode assemblages by means of the Maturity Index. Marine Ecology Progress Series 76135-142. DOI: 10.3354/meps076135

  • BongersT.De GoedeR.G.N.KorthalsG.W.YeatesG.W. (1995). Proposed changes of c-p classification of nematodes. Russian Journal of Nematology 361-62.

  • BoufahjaF.BeyremH.EssidN.AmorriJ.MahmoudiE.AïssaP. (2007). Morphometry, energetics and diversity of free-living nematodes from coasts of Bizerte lagoon Tunisia: an ecological meaning. Cahiers de Biologie Marine 48121-137.

  • BoufahjaF.HedfiA.AmorriJ.AïssaP.BeyremH.MahmoudiE. (2011). An assessment of the impact of chromium-amended sediment on a marine nematode assemblage using microcosm bioassays. Biological Trace Elements Research 142242-255. DOI: 10.1007/s12011-010-8762-6

  • BouwmanL.A. (1983). A survey of Nematoda from the Ems estuary: species assemblages and associations. Zoologische Jahrbucher Systematik Okologie und Geographie der Tiere 110345-376.

  • ChangB.V.YuC.H.YuanS.Y. (2004). Degradation of nonylphenol by anaerobic microorganisms from river sediment. Chemosphere 55493-500. DOI: 10.1016/j.chemosphere.2004.01.004

  • DangD.N.LeanD.T.TolosaI.De MoraS.J. (2005). Occurrence of butyltin compounds in marine sediments and bivalves from three harbour areas (Saigon, Da Nang and Hai Phong) in Vietnam. Applied Organometallic Chemistry 19811-818. DOI: 10.1002/aoc.923

  • De GrisseA.T. (1969). Redescription ou modification de quelques techniques utilisées dans l’étude des nématodes phytoparasitaires. Meded Rijksfakulteit Landbouwwetenschappen Gent 34351-369.

  • DoongR.A.SunY.C.LiaoP.L.PengC.K.WuS.C. (2002). Distribution and fate of organochlorine pesticide residues in sediments from the selected rivers in Taiwan. Chemosphere 48237-246. DOI: 10.1016/S0045-6535(02)00066-8

  • DubeyS.K.RoyU. (2003). Biodegradation of tributyltins (organotins) by marine bacteria. ChemInform 349. DOI: 10.1002/chin.200309266

  • GibbsP.E.BryanG.W. (1996). Reproductive failure in the gastropod Nucella lapillus associated with imposex caused by tributyltin pollution. In: ChampM.A.SeligmanP.F. (Eds). Organotin: environmental fate and effects. Dordrecht, The NetherlandsSpringer pp.  259-280.

  • GuiliniK.LisaA.L.VanreuselA. (2012). Cold seep and oxygen minimum zone associated sources of margin heterogeneity affect benthic assemblages, diversity and nutrition at the Cascadian margin (NE Pacific Ocean). Progress in Oceanography 9677-92. DOI: 10.1016/j.pocean.2011.10.003

  • GuvenK.DuceJ.A.de PomeraiD.I. (1994). Evaluation of a stress-inducible transgenic nematode strain for rapid aquatic toxicity testing. Aquatic Toxicology 29119-137. DOI: 10.1016/0166-445X(94)90052-3

  • HaggeraJ.A.DepledgeM.H.GallowayT.S. (2005). Toxicity of tributyltin in the marine mollusc Mytilus edulis. Marine Pollution Bulletin 51811-816.

  • HeipC.VincxM.VrankenG. (1985). The ecology of marine nematodes. In: BarnesM. (Ed.). Oceanography and marine biology an annual review vol. 23. Aberdeen, UKAberdeen University Press pp.  399-489.

  • HoddaM.NicholasW.L. (1990). Production of meiofauna in an Australian estuary. Wetlands Australia Journal 941-48.

  • HongxiaL.GuolanH.ShuguiD. (1998). Toxicity and accumulation of tributyltin chloride on Tilapia. Applied Organometallic Chemistry 12109-119.

  • HoshiH.KamataY.UemuraT. (2003). Effects of 17β-estradiol, bisphenol A and tributyltin chloride on germ cells of Caenorhabditis elegans. Journal of Veterinary Medical Science 65881-885.

  • HössS.WeltjeL. (2007). Endocrine disruption in nematodes: effects and mechanisms. Ecotoxicology 1615-28. DOI: 10.1007/s10646-006-0108-y

  • JensenP. (1987). Differences in microhabitat, abundance, biomass and body size between oxybiotic and thiobiotic free-living marine nematodes. Oecologia 71564-567. DOI: 10.1007/BF00379298

  • KannanK.GurugeK.S.ThomasN.J.TanabeS.GiesyJ.P. (1998). Butyltin residues in southern sea otters (Enhydra lutris nereis) found dead along California coastal waters. Environmental Science and Technology 321169-1175.

  • LangstonW.J.BurtG.R.ZhouM. (1987). Tin and organotin in water, sediments and benthic organisms of Poole Harbour. Marine Pollution Bulletin 18634-639. DOI: 10.1016/0025-326X(87)90395-X

  • LenihanH.S.OliverJ.S.StephensonM.A. (1990). Changes in hard bottom communities related to boat mooring and tributyltin in San Diego Bay: a natural experiment. Marine Ecology Progress Series 60147-159.

  • LiuX.S.ZhangZ.N.HuangY. (2007). Sublittoral meiofauna with particular reference to nematodes in the southern Yellow Sea, China. Estuarine Coastal and Shelf Science 71616-628. DOI: 10.1016/j.ecss.2006.09.013

  • LosiV.MorenoM.GaozzaL.VezzulliL.FabianoM.AlbertelliG. (2013). Nematode biomass and allometric attributes as indicators of environmental quality in a Mediterranean harbour (Ligurian Sea, Italy). Ecological Indicators 3080-89. DOI: 10.1016/j.ecolind.2013.01.034

  • MahmoudiE.EssidN.BeyremH.HedfiA.BoufahjaF.VitielloP.AissaP. (2005). Effects of hydrocarbon contamination on a free-living marine nematode community: results from microcosm experiments. Marine Pollution Bulletin 501197-1204. DOI: 10.1016/j.marpolbul.2005.04.018

  • MatthiessenP.GibbsP.E. (1998). Critical appraisal of the evidence for tributyltin-mediated endocrine disruption in mollusks. Environmental Toxicology and Chemistry 1737-43. DOI: 10.1002/etc.5620170106

  • MayerF.L. (1987). Acute toxicity of chemicals to estuarine organisms. U.S. Environmental Protection Agency Report 600/8-83/017.

  • MurataS.TakahashiS.AgusaT.ThomasN.J.KannanK.TanabeS. (2008). Contamination status and accumulation profiles of organotins in sea otters (Enhydra lutris) found dead along the coasts of California, Washington, Alaska (USA), and Kamchatka (Russia). Marine Pollution Bulletin 56641-649. DOI: 10.1016/j.marpolbul.2008.01.019

  • NgoX.Q.NguyenN.C.VanreuselA. (2014). Nematode morphometry and biomass patterns in relation to community characteristics and environmental variables in the Mekong estuaries. The Raffles Bulletin of Zoology 62501-512.

  • NgoX.Q.NguyenT.M.Y.NguyenV.D.ProzorovaL.SmolN.VanreuselA. (2017). Nematode communities in the Saigon River harbors in relation to tributyltin concentrations. Marine Biodiversity 201-13. DOI: 10.1007/s12526-017-0718-z

  • PetersR.H. (1983). The ecological implications of body size. Cambridge, UKCambridge University Press.

  • Rotterdam Convention (2009). Operation of the prior informed consent procedure for banned or severely restricted chemicals. Decision guidance documents. Tributyltin compounds. Rome, ItalyFood and Agriculture Organization of the United NationsUnited Nations Environment Programme.

  • Rzeznik-OrignacJ.FichetD.BoucherG. (2003). Spatio-temporal structure of nematode assemblages of the Brouage mudflat (Marennes Oléron, France). Estuarine Coastal and Shelf Science 5877-88. DOI: 10.1016/S0272-7714(03)00061-1

  • SantilloD.JohnstonP.LangstonW.J. (2013). Tributyltin (TBT) antifoulants: a tale of ships, snails and imposex. In: HarremoësP.GeeD.MacGarvinM.StirlingA.KeysJ.WynneB.Guedes VazS. (Eds). Late lessons from early warnings: the precautionary principle 1896-2000. Copenhagen, DenmarkEuropean Environment Agency pp.  135-148.

  • SchratzbergerM. (2001). Effects of paint-derived tributyltin (TBT) on the structure of estuarine nematode assemblages in experimental microcosms. Lowestoft, UKCentre for Environment, Fisheries and Aquaculture Science (CEFAS).

  • SchratzbergerM.WallC.M.ReynoldsW.J.ReedJ.WaldockM.J. (2002). Effects of paint-derived tributyltin (TBT) on structure of estuarine nematode assemblages in experimental microcosms. Journal of Experimental Marine Biology and Ecology 272217-235. DOI: 10.1016/S0022-0981(02)00129-6

  • SchratzbergerM.WarrK.RogersS.I. (2007). Functional diversity of nematode communities in the southwestern North Sea. Marine Environmental Research 63368-389. DOI: 10.1016/j.marenvres.2006.10.006

  • SemprucciF.FrontaliniF.SbroccaC.Armynot du ChâteletE.Bout-RoumazeillesV.CoccioniR.BalsamoM. (2015). Meiobenthos and free-living nematodes as tools for biomonitoring environments affected by riverine impact. Environmental Monitoring Assessment 187251. DOI: 10.1007/s10661-015-4493-7

  • ShortJ.W.ThrowerF.P. (1986). Tributyltin caused mortality of Chinook salmon, Oncorhynchus tshawytscha, on transfer to TBT-treated marine net pen. In: ChampM.A. (Ed.). International organotin symposium OCEANS ’86 23-25 September 1986. Washington, DC, USAIEEE pp.  1202-1205. DOI: 10.1109/OCEANS.1986.1160364

  • SmolN.WillemsK.A.GovaereJ.C.SandeeA.J.J. (1994). Composition, distribution and biomass of meiobenthos in the Oosterschelde estuary (SW Netherlands). Hydrobiologia 282197-217. DOI: 10.1007/BF00024631

  • SoetaertK.MuthumbiA.HeipC. (2002). Size and shape of ocean margin nematodes: morphological diversity and depth-related patterns. Marine Ecology Progress Series 242179-193.

  • TitaG.VincxM.DesrosiersG. (1999). Size spectra, body width and morphotypes of intertidal nematodes: an ecological interpretation. Journal of the Marine Biological Association of the UK 791007-1015. DOI: 10.1017/S0025315499001241

  • UngerM.A.MacIntyreW.G.HuggettR.J. (1988). Sorption behaviour of tributyltin on estuarine and freshwater sediments. Environmental Toxicology and Chemistry 7907-915.

  • VanaverbekeJ.SteyaertM.VanreuselA.VincxM. (2003). Nematode biomass spectra as descriptors of functional changes due to human and natural impact. Marine Ecology Progress Series 249157-170.

  • VincxM. (1996). Meiofauna in marine and fresh water sediments. In: HallG.S. (Ed.). Methods for the examination of organismal diversity in soils and sediments. Wallingford, UKCAB International pp.  187-195.

  • VosJ.G.DybingE.GreimH.A.LadefogedO.LambreC.TarazonaJ.V.BrandtI.VethaakA.D. (2000). Health effects of endocrine-disrupting chemicals on wildlife, with special reference to the European situation. Critical Reviews in Toxicology 3071-133. DOI: 10.1080/10408440091159176

  • WaldockR.ReesH.L.MatthiesenP.PendleM.A. (1999). Surveys of the benthic infauna of the Crouch Estuary (UK) in relation to TBT contamination. Journal of the Marine Biological Association of the UK 79225-232. DOI: 10.1017/S0025315497000258

  • WieserW. (1960). Benthic studies in Buzzards Bay. II. The meiofauna. Limnology and Oceanography 5121-137. DOI: 10.4319/lo.1960.5.2.0121

Figures

  • View in gallery

    Map of sampling stations in the Saigon River, Vietnam.

  • View in gallery

    Principal Component Analysis based on normalised environmental variables for all stations in dry season (D) and wet season (W). MBT = monobutyltin; DBT = dibutyltin; TBT = tributyltin; TOC = total organic carbon; ORP = oxygen redox potential.

  • View in gallery

    Length (x-axis) and width (y-axis) scatter plots for all measured nematodes in the Saigon River harbours in the dry and wet seasons.

  • View in gallery

    Nematode gender structure showing the proportions of juveniles (J), males (M) and females (F) for 12 stations (SG1-SG12) sampled in the dry (D) and wet (W) seasons. The table shows the results of the PERMANOVA pairwise comparisons. Each time the interaction was significant, comparisons are shown of seasons within stations (∗ = significant differences P<0.05) and of stations within each of the seasons (stations that differ from the station as indicated in the first row are listed). The last line presents the number of measured individuals for each site during dry and wet seasons.

  • View in gallery

    Geometric mean and standard deviation of nematode individual biomass (μg 10 cm−2) for 12 stations (SG1-SG12) sampled in the dry (D) and wet (W) seasons. The table shows the results of the PERMANOVA pairwise comparisons as described in Figure 4.

  • View in gallery

    Nematode biomass spectra (mean and standard deviation) for all stations sampled in the dry (D) and wet (W) seasons. The table shows the results of the PERMANOVA pairwise comparisons as described in Figure 4.

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 68 68 3
Full Text Views 198 198 0
PDF Downloads 8 8 0
EPUB Downloads 1 1 0