The D3-D5 region of large subunit ribosomal DNA provides good resolution of German limnic and terrestrial nematode communities

in Nematology
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?


Reliable and well-developed DNA barcode databases are indispensable for the identification of microscopic life. However, effectiveness of molecular barcoding in identifying terrestrial specimens, and nematodes in particular, has received little attention. In this study, ca 600 ribosomal large subunit DNA fragments (D3-D5 region) were successfully amplified for 79 limnic and terrestrial nematode species sampled at 147 locations across Germany. Distinctive DNA motifs in the LSU region were identified in 80% of all species examined. For 13 supposedly single morphospecies, 2-7 LSU barcode groups were detected with a wide range of intraspecific variations (0.09-7.9%). This region seems to be more suitable for the assessment of limno-terrestrial nematode diversity than the frequently used mitochondrial gene COI, as amplification success of the latter fragment is low for several nematode species. Our reference database for nematodes may serve as a starting point for applied and fundamental studies for these ubiquitous, ecologically highly relevant, organisms.

The D3-D5 region of large subunit ribosomal DNA provides good resolution of German limnic and terrestrial nematode communities

in Nematology



  • AlpheiJ. (1998). Differences in soil nematode community structure of beech forests: comparison between a mull and a moder soil. Applied Soil Ecology 99-15. DOI: 10.1016/S0929-1393(98)00047-X

  • AndrássyI. (1984). Klasse Nematoda: (Ordnungen Monhysterida, Desmoscolecida, Araeolaimida, Chromadorida, Rhabditida). In: FranzH. (Ed.). Bestimmungsbücher zur Bodenfauna Europas. Stuttgart, GermanyGustav Fischer.

  • AndrássyI. (2005). Free-living nematodes of Hungary (Nematoda errantia) I. Pedozoologica Hungarica No. 3 (Series Editors CsuzdiC.MahunkaS.). Budapest, HungaryHungarian Natural History Museum and Systematic Zoology Research Group of the Hungarian Academy of Sciences.

  • AndrássyI. (2007). Free-living nematodes of Hungary (Nematoda errantia) II. Pedozoologica Hungarica No. 4 (Series Editors CsuzdiC.MahunkaS.). Budapest, HungaryHungarian Natural History Museum and Systematic Zoology Research Group of the Hungarian Academy of Sciences.

  • AndrássyI. (2009). Free-living nematodes of Hungary (Nematoda errantia) III. Pedozoologica Hungarica No. 5 (Series Editors CsuzdiC.MahunkaS.). Budapest, HungaryHungarian Natural History Museum and Systematic Zoology Research Group of the Hungarian Academy of Sciences.

  • ArtoisT.FontanetoD.HummonW.D.McInnesS.J.TodaroM.A.SørensenM.V.MartinV.ZulliniA. (2011). Ubiquity of microscopic animals? Evidence from the morphological approach in species identification. In: FontanetoD. (Ed.). Biogeography of microscopic organisms: is everything small everywhere? Cambridge, UKCambridge University Press pp.  244-249.

  • BainO.BaldwinJ.G.BeveridgeI.BezerraT.C.BraeckmanU.CoomansA.DecraemerW.DeryckeS.Durette-DessetM.FonsecaG. (2014). Nematoda. Berlin, GermanyDe Gruyter.

  • BairdD.J.HajibabaeiM. (2012). Biomonitoring 2.0: a new paradigm in ecosystem assessment made possible by next-generation DNA sequencing. Molecular Ecology 212039-2044. DOI: 10.1111/j.1365-294X.2012.05519.x

  • BallS.L.HebertP.D.BurianS.K.WebbJ.M. (2005). Biological identifications of mayflies (Ephemeroptera) using DNA barcodes. Journal of the North American Benthological Society 24508-524. DOI: 10.1899/04-142.1

  • BeierS.TraunspurgerW. (2003). Seasonal distribution of free-living nematodes in the Krähenbach, a fine-grained submountain carbonate stream in southwest Germany. Nematology 5113-136. DOI: 10.1163/156854102765216740

  • BlaxterM.L. (2004). The promise of a DNA taxonomy. Philosophical Transactions of the Royal Society B: Biological Sciences 359669-679. DOI: 10.1098/rstb.2003.1447

  • BlaxterM.L.De LeyP.GareyJ.R.LiuL.X.ScheldemanP.VierstraeteA.VanfleterenJ.R.MackeyL.Y.DorrisM.FrisseL.M. (1998). A molecular evolutionary framework for the phylum Nematoda. Nature 39271-75. DOI: 10.1038/32160

  • BlaxterM.L.MannJ.ChapmanT.ThomasF.WhittonC.FloydR.AbebeE. (2005). Defining operational taxonomic units using DNA barcode data. Philosophical Transactions of the Royal Society B: Biological Sciences 3601935-1943. DOI: 10.1098/rstb.2005.1725

  • BoagB.YeatesG.W. (1998). Soil nematode biodiversity in terrestrial ecosystems. Biodiversity and Conservation 7617-630. DOI: 10.1023/A:1008852301349

  • BrzeskiM.W. (1998). Nematodes of Tylenchina in Poland and temperate Europe. Warsaw, PolandMuzeum i Instytutu Zoologii, Polska Akademia Nauk (MiIZ PAN).

  • CreerS.FonsecaV.G.PorazinskaD.L.Giblin-DavisR.M.SungW.PowerD.M.PackerM.CarvalhoG.R.BlaxterM.L.LamsheadP.J.D. (2010). Ultrasequencing of the meiofaunal biosphere: practice, pitfalls and promises. Molecular Ecology 194-20. DOI: 10.1111/j.1365-294X.2009.04473.x

  • De LeyP.De LeyI.T.MorrisK.AbebeE.Mundo-OcampoM.YoderM.HerasJ.WaumannD.Rocha-OlivaresA.Jay BurrA.H.J. (2005). An integrated approach to fast and informative morphological vouchering of nematodes for applications in molecular barcoding. Philosophical Transactions of the Royal Society B: Biological Sciences 3601945-1958. DOI: 10.1098/rstb.2005.1726

  • de MeesterL.GomezA.OkamuraS.SchwenkK. (2002). The monopolization hypothesis and the dispersal-gene flow paradox in aquatic organisms. Acta Oecologica 23121-135. DOI: 10.1016/S1146-609X(02)01145-1

  • DeckerH. (1969). Phytonematologie. Berlin, GermanyDeutscher Landwirtschftsverlag.

  • DeryckeS.BackeljauT.MoensT. (2013). Dispersal and gene flow in free-living marine nematodes. Frontiers in Zoology 101-12. DOI: 10.1186/1742-9994-10-1

  • GeigerM.F.AstrinJ.J.BorschT.BurkhardtU.GrobeP.HandR.HausmannA.HohbergK.KrogmannL.LutzM. (2016). How to tackle the molecular species inventory for an industrialized nation-lessons from the first phase of the German Barcode of Life initiative GBOL (2012-2015). Genome 591-10. DOI: 10.1139/gen-2015-0185

  • HajibabaeiM.JanzenD.H.BurnsJ.M.HallwachsW.HebertP.D. (2006). DNA barcodes distinguish species of tropical Lepidoptera. Proceedings of the National Academy of Sciences of the United States of America 103968-971. DOI: 10.1073/pnas.0510466103

  • HebertP.D.CywinskaA.BallS.L.deWaardJ.R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society B: Biological Sciences 270313-321. DOI: 0.1098/rspb.2002.2218

  • HebertP.D.StoeckleM.Y.ZemlakT.S.FrancisC.M. (2004). Identification of birds through DNA barcodes. PLoS Biology 21657-1663. DOI: 10.1371/journal.pbio.0020312

  • HohbergK.TraunspurgerW. (2005). Predator-prey interaction in soil food web: functional response, size-dependent foraging efficiency, and the influence of soil texture. Biology and Fertility of Soils 41419-427. DOI: 10.1007/s00374-005-0852-9

  • HoltermanM.RybarczykK.van den ElsenS.van MegenH.MooymanP.Peña-SantiagoR.BongersT.BakkerJ.HelderJ. (2008). A ribosomal DNA-based framework for the detection and quantification of stress-sensitive nematode families in terrestrial habitats. Molecular Ecology Resources 823-34. DOI: 10.1111/j.1471-8286.2007.01963.x

  • HoltermanM.KarssenG.van den ElsenS.van MegenH.BakkerJ.HelderJ. (2009). Small subunit rDNA-based phylogeny of the Tylenchida sheds light on relationships among some high-impact plant-parasitic nematodes and the evolution of plant feeding. Phytopathology 99227-235. DOI: 10.1094/PHYTO-99-3-0227

  • HugotJ.-P.BaujardP.MorandS. (2001). Biodiversity in helminths and nematodes as a field of study: an overview. Nematology 3199-208. DOI: 10.1163/156854101750413270

  • InghamR.E.TrofymowJ.A.InghamE.R.ColemanD.C. (1985). Interactions of bacteria, fungi, and their nematode grazers: effects on nutrient cycling and plant growth. Ecological Monographs 55119-140. DOI: 10.2307/1942528

  • JanzenD.H.HajibabaeiM.BurnsJ.M.HallwachsW.RemigioE.HebertP.D. (2005). Wedding biodiversity inventory of a large and complex Lepidoptera fauna with DNA barcoding. Philosophical Transactions of the Royal Society B: Biological Sciences 3601835-1845. DOI: 10.1098/rstb.2005.1715

  • JörgerK.M.NorenburgJ.L.WilsonN.G.SchrödlM. (2012). Barcoding against a paradox? Combined molecular species delineations reveal multiple cryptic lineages in elusive meiofaunal sea slugs. BMC Evolutionary Biology 121-18. DOI: 10.1186/1471-2148-12-245

  • LambsheadP.I. (1993). Recent developments in marine benthic biodiversity research. Oceanis 195-24.

  • LejzerowiczF.EslingP.PilletL.WildingT.A.BlackK.D.PawlowskiJ. (2015). High-throughput sequencing and morphology perform equally well for benthic monitoring of marine ecosystems. Scientific Reports 51-10. DOI: 10.1038/srep13932

  • LiaoD. (1999). Concerted evolution: molecular mechanism and biological implications. The American Journal of Human Genetics 6424-30. DOI: 10.1086/302221

  • LoofP.A.A. (1999). Nematoda: Adenophorea (Dorylaimida). In: SchwoerbelJ.ZwickP. (Eds). Süßwasserfauna von Mitteleuropa4/2-2. Heidelberg, BerlinSpektrum.

  • LoofP.A.A. (2001). Nematoda: Secernentea (Tylenchida, Aphelenchida). In: SchwoerbelJ.ZwickP. (Eds). Süßwasserfauna von Mitteleuropa4/1-1. Heidelberg, BerlinSpektrum.

  • LydeardC.CowieR.H.PonderW.F.BoganA.E.BouchetP.ClarkS.A.CummingsK.S.FrestT.J.GargominyO.HerbertD.G. (2004). The global decline of nonmarine mollusks. BioScience 54321-330. DOI: 10.1641/0006-3568(2004)054[0321:TGDONM]2.0.CO;2

  • MaddisonW.P.KnowlesL.L. (2006). Inferring phylogeny despite incomplete lineage sorting. Systematic Biology 5521-30. DOI: 10.1080/10635150500354928

  • MahéF.MayorJ.BungeJ.ChiJ.SiemensmeyerT.StoeckT.WahlB.PaprotkaT.FilkerS.DunthornM. (2015). Comparing high-throughput platforms for sequencing the V4 Region of SSU-rDNA in environmental microbial eukaryotic diversity surveys. The Journal of Eukaryotic Microbiology 62338-345. DOI: 10.1111/jeu.12187

  • MajdiN.TraunspurgerW. (2015). Free-living nematodes in the freshwater food web: a review. Journal of Nematology 4728-44.

  • MajdiN.ThreisI.TraunspurgerW. (2017). It’s the little things that count: Meiofaunal density and production in the sediment of two headwater streams. Limnology and Oceanography 62151-163. DOI: 10.1002/lno.10382

  • MarkmannM.TautzD. (2005). Reverse taxonomy: an approach towards determining the diversity of meiobenthic organisms based on ribosomal RNA signature sequences. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences 3601917-1924. DOI: 10.1098/rstb.2005.1723

  • MeyerC.P.PaulayG. (2005). DNA barcoding: error rates based on comprehensive sampling. PLoS Biology 3e422. DOI: 10.1371/journal.pbio.0030422

  • MoraC.TittensorD.P.AdlS.SimpsonA.G.WormB. (2011). How many species are there on Earth and in the ocean? PLoS Biology 9e1001127. DOI: 10.1371/journal.pbio.1001127

  • MutanenM.KekkonenM.ProsserS.W.HebertP.D.KailaL. (2015). One species in eight: DNA barcodes from type specimens resolve a taxonomic quagmire. Molecular Ecology Resources 15967-984. DOI: 10.1111/1755-0998.12361

  • NadlerS. (2002). Species delimitation and nematode biodiversity: phylogenies rule. Nematology 4615-625. DOI: 10.1163/15685410260438908

  • NkemJ.N.WallD.H.VirginiaR.A.BarrettJ.E.BroosE.J.PorazinskaD.L.AdamsB.J. (2006). Wind dispersal of soil invertebrates in the McMurdo Dry Valleys, Antarctica. Polar Biology 29346-352. DOI: 10.1007/s00300-005-0061-x

  • NortonD.C. (1978). Ecology of plant-parasitic nematodes. New York, NY, USAWiley.

  • PfannkucheO.ThielH. (1988). Sample processing. In: HigginsR.P.ThielH. (Eds). Introduction to the study of Meiofauna. Washington, DC, USASmithsonian Institution Press pp.  134-145.

  • ProsserS.W.Velarde-AguilarM.G.Leon-RegagnonV.HebertP.D. (2013). Advancing nematode barcoding: a primer cocktail for the cytochrome C oxidase subunit I gene from vertebrate parasitic nematodes. Molecular Ecology Resources 131108-1115. DOI: 10.1111/1755-0998.12082

  • PuillandreN.LambertA.BrouilletS.AchazG. (2012). ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology 211864-1877. DOI: 10.1111/j.1365-294X.2011.05239.x

  • RistauK.SteinfartzS.TraunspurgerW. (2013). First evidence of cryptic species diversity and significant population structure in a widespread freshwater nematode morphospecies (Tobrilus gracilis). Molecular Ecology 224562-4575. DOI: 10.1111/mec.12414

  • SandsC.J.ConveyP.LinseK.McInnesS.J. (2008). Assessing meiofaunal variation among individuals utilising morphological and molecular approaches: an example using the Tardigrada. BMC Ecology 81-11. DOI: 10.1186/1472-6785-8-7

  • SauerJ.HausdorfB. (2012). A comparison of DNA-based methods for delimiting species in a Cretan land snail radiation reveals shortcomings of exclusively molecular taxonomy. Cladistics 28300-316. DOI: 10.1111/j.1096-0031.2011.00382.x

  • SchenkJ.TraunspurgerW.RistauK. (2016). Genetic diversity of widespread moss-dwelling nematode species in German beech forests. European Journal of Soil Biology 7423-31. DOI: 10.1016/j.ejsobi.2016.03.002

  • Schmid-ArayaJ.M.SchmidP.E. (2000). Trophic relationships: integrating meiofauna into a realistic benthic food web. Freshwater Biology 44149-163. DOI: 10.1046/j.1365-2427.2000.00594.x

  • SlatkinM. (1987). Gene flow and the geographic structure of natural populations. Science 236787-792.

  • SonnenbergR.NolteA.W.TautzD. (2007). An evaluation of LSU rDNA D1-D2 sequences for their use in species identification. Frontiers in Zoology 41-12. DOI: 10.1186/1742-9994-4-6

  • SturhanD.HohbergK. (2016). Nematodes of the order Tylenchida in Germany – the non-phytoparasitic species. Soil Organisms 8819-41.

  • SuzukiY.NijhoutH.F. (2006). Evolution of a polyphenism by genetic accommodation. Science 311650-652. DOI: 10.1126/science.1118888

  • TamuraK.StecherG.PetersonD.FilipskiA.KumarS. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 302725-2729. DOI: 10.1093/molbev/mst197

  • TavaréS. (1986). Some probabilistic and statistical problems in the analysis of DNA sequences. Lectures on Mathematics in the Life Sciences 1757-86.

  • TraunspurgerW. (2002). Nematoda. In: RundleS.D.RobertsonA.L.Schmid-ArayaJ.M. (Eds). Freshwater meiofauna: biology and ecology. Leiden, The NetherlandsBackhuys Publishers pp.  63-104.

  • TraunspurgerW. (2014). Ecology of freshwater nematodes. In: Schmidt-RhaesaA. (Ed.). Handbook of zoology; Gastrotricha Cycioneuralia and Gnathifera volume 2: Nematoda. Berlin, GermanyDe Gruyter pp.  153-169.

  • TraunspurgerW.MichielsI.C.Eyualem-Abebe (2006). Composition and distribution of free-living freshwater nematodes: global and local perspectives. In: Eyualem-AbebeAndrássyI.TraunspurgerW. (Eds). Freshwater nematodes: ecology and taxonomy. Wallingford, UKCABI Publishing pp.  46-76.

  • van MegenH.van den ElsenS.HoltermanM.KarssenG.MooymanP.BongersT.HolovachovO.BakkerJ.HelderJ. (2009). A phylogenetic tree of nematodes based on about 1200 full-length small subunit ribosomal DNA sequences. Nematology 11927-950. DOI: 10.1163/156854109X456862

  • VanschoenwinkelB.GielenS.SeamanM.BrendonckL. (2009). Wind mediated dispersal of freshwater invertebrates in a rock pool metacommunity: differences in dispersal capacities and modes. Hydrobiologia 635363-372. DOI: 10.1007/s10750-009-9929-z

  • YangL.TanZ.WangD.XueL.GuanM.-x.HuangT.RonghuaL. (2014). Species identification through mitochondrial rRNA genetic analysis. Scientific Reports 41-11. DOI: 10.1038/srep04089

  • YeatesG.W.BongersT.De GoedeR.G.M.FreckmanD.W.GeorgievaS.S. (1993). Feeding habits in soil nematode families and genera – an outline for soil ecologists. Journal of Nematology 25315-331.


  • View in gallery

    Sampling locations in Germany. Black stars indicate the sampling locations for limnic nematodes, and black dots those of terrestrial nematodes.

  • View in gallery

    Intraspecific divergences for the large ribosomal subunit (LSU) based on pairwise divergences (%). Only species that exhibited a detectable intraspecific divergence are shown; species with no intraspecific variance (Tripyla setifera, Acrostichus nudicapitatus, Eumonhystera filiformis) are only shown as examples.

  • View in gallery

    Intra- and interspecific variability for the LSU based on nucleotide p-distance (uncorrected, %). The frequencies of the pairwise differences for the 79 species included in the analysis are shown. Intraspecific variability is shown in grey, and interspecific variability in black.

  • View in gallery

    Maximum likelihood tree for 79 nematode species, sampled and sequenced in this study, based on the LSU gene fragment. The analysis was run with a bootstrap value of 1000. The major clades are indicated by coloured boxes. Numbers at the branches represent support values for the nodes. Numbers in parentheses indicate the number of sequences for this species.

  • View in gallery

    Maximum likelihood tree for 21 nematode species based on the SSU gene fragment. All sequences were generated in this study. The analysis was run with a bootstrap value of 1000. The major clades are indicated by coloured boxes. Numbers at the branches represent support values for the nodes.

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 123 118 7
Full Text Views 206 206 0
PDF Downloads 7 7 0
EPUB Downloads 0 0 0