The D3-D5 region of large subunit ribosomal DNA provides good resolution of German limnic and terrestrial nematode communities

In: Nematology
View More View Less
  • 1 Department of Animal Ecology, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany
  • 2 Senckenberg Museum of Natural History Görlitz, Am Museum 1, 02826 Görlitz, Germany
  • 3 Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1 (RADIX building), 6708 PB Wageningen, The Netherlands

Purchase instant access (PDF download and unlimited online access):

€25.00$30.00

Reliable and well-developed DNA barcode databases are indispensable for the identification of microscopic life. However, effectiveness of molecular barcoding in identifying terrestrial specimens, and nematodes in particular, has received little attention. In this study, ca 600 ribosomal large subunit DNA fragments (D3-D5 region) were successfully amplified for 79 limnic and terrestrial nematode species sampled at 147 locations across Germany. Distinctive DNA motifs in the LSU region were identified in 80% of all species examined. For 13 supposedly single morphospecies, 2-7 LSU barcode groups were detected with a wide range of intraspecific variations (0.09-7.9%). This region seems to be more suitable for the assessment of limno-terrestrial nematode diversity than the frequently used mitochondrial gene COI, as amplification success of the latter fragment is low for several nematode species. Our reference database for nematodes may serve as a starting point for applied and fundamental studies for these ubiquitous, ecologically highly relevant, organisms.

  • Alphei J. (1998). Differences in soil nematode community structure of beech forests: comparison between a mull and a moder soil. Applied Soil Ecology 9, 9-15. DOI: 10.1016/S0929-1393(98)00047-X

    • Search Google Scholar
    • Export Citation
  • Andrássy I. (1984). Klasse Nematoda: (Ordnungen Monhysterida, Desmoscolecida, Araeolaimida, Chromadorida, Rhabditida). In: Franz H. (Ed.). Bestimmungsbücher zur Bodenfauna Europas. Stuttgart, Germany, Gustav Fischer.

    • Search Google Scholar
    • Export Citation
  • Andrássy I. (2005). Free-living nematodes of Hungary (Nematoda errantia), I. Pedozoologica Hungarica No. 3, (Series Editors Csuzdi C., Mahunka S.). Budapest, Hungary, Hungarian Natural History Museum and Systematic Zoology Research Group of the Hungarian Academy of Sciences.

    • Search Google Scholar
    • Export Citation
  • Andrássy I. (2007). Free-living nematodes of Hungary (Nematoda errantia), II. Pedozoologica Hungarica No. 4, (Series Editors Csuzdi C., Mahunka S.). Budapest, Hungary, Hungarian Natural History Museum and Systematic Zoology Research Group of the Hungarian Academy of Sciences.

    • Search Google Scholar
    • Export Citation
  • Andrássy I. (2009). Free-living nematodes of Hungary (Nematoda errantia), III. Pedozoologica Hungarica No. 5, (Series Editors Csuzdi C., Mahunka S.). Budapest, Hungary, Hungarian Natural History Museum and Systematic Zoology Research Group of the Hungarian Academy of Sciences.

    • Search Google Scholar
    • Export Citation
  • Artois T., Fontaneto D., Hummon W.D., McInnes S.J., Todaro M.A., Sørensen M.V., Martin V., Zullini A. (2011). Ubiquity of microscopic animals? Evidence from the morphological approach in species identification. In: Fontaneto D. (Ed.). Biogeography of microscopic organisms: is everything small everywhere? Cambridge, UK, Cambridge University Press, pp.  244-249.

    • Search Google Scholar
    • Export Citation
  • Bain O., Baldwin J.G., Beveridge I., Bezerra T.C., Braeckman U., Coomans A., Decraemer W., Derycke S., Durette-Desset M., Fonseca G. (2014). Nematoda. Berlin, Germany, De Gruyter.

    • Search Google Scholar
    • Export Citation
  • Baird D.J., Hajibabaei M. (2012). Biomonitoring 2.0: a new paradigm in ecosystem assessment made possible by next-generation DNA sequencing. Molecular Ecology 21, 2039-2044. DOI: 10.1111/j.1365-294X.2012.05519.x

    • Search Google Scholar
    • Export Citation
  • Ball S.L., Hebert P.D., Burian S.K., Webb J.M. (2005). Biological identifications of mayflies (Ephemeroptera) using DNA barcodes. Journal of the North American Benthological Society 24, 508-524. DOI: 10.1899/04-142.1

    • Search Google Scholar
    • Export Citation
  • Beier S., Traunspurger W. (2003). Seasonal distribution of free-living nematodes in the Krähenbach, a fine-grained submountain carbonate stream in southwest Germany. Nematology 5, 113-136. DOI: 10.1163/156854102765216740

    • Search Google Scholar
    • Export Citation
  • Blaxter M.L. (2004). The promise of a DNA taxonomy. Philosophical Transactions of the Royal Society B: Biological Sciences 359, 669-679. DOI: 10.1098/rstb.2003.1447

    • Search Google Scholar
    • Export Citation
  • Blaxter M.L., De Ley P., Garey J.R., Liu L.X., Scheldeman P., Vierstraete A., Vanfleteren J.R., Mackey L.Y., Dorris M., Frisse L.M. (1998). A molecular evolutionary framework for the phylum Nematoda. Nature 392, 71-75. DOI: 10.1038/32160

    • Search Google Scholar
    • Export Citation
  • Blaxter M.L., Mann J., Chapman T., Thomas F., Whitton C., Floyd R., Abebe E. (2005). Defining operational taxonomic units using DNA barcode data. Philosophical Transactions of the Royal Society B: Biological Sciences 360, 1935-1943. DOI: 10.1098/rstb.2005.1725

    • Search Google Scholar
    • Export Citation
  • Boag B., Yeates G.W. (1998). Soil nematode biodiversity in terrestrial ecosystems. Biodiversity and Conservation 7, 617-630. DOI: 10.1023/A:1008852301349

    • Search Google Scholar
    • Export Citation
  • Brzeski M.W. (1998). Nematodes of Tylenchina in Poland and temperate Europe. Warsaw, Poland, Muzeum i Instytutu Zoologii, Polska Akademia Nauk (MiIZ PAN).

    • Search Google Scholar
    • Export Citation
  • Creer S., Fonseca V.G., Porazinska D.L., Giblin-Davis R.M., Sung W., Power D.M., Packer M., Carvalho G.R., Blaxter M.L., Lamshead P.J.D. (2010). Ultrasequencing of the meiofaunal biosphere: practice, pitfalls and promises. Molecular Ecology 19, 4-20. DOI: 10.1111/j.1365-294X.2009.04473.x

    • Search Google Scholar
    • Export Citation
  • De Ley P., De Ley I.T., Morris K., Abebe E., Mundo-Ocampo M., Yoder M., Heras J., Waumann D., Rocha-Olivares A., Jay Burr A.H.J. (2005). An integrated approach to fast and informative morphological vouchering of nematodes for applications in molecular barcoding. Philosophical Transactions of the Royal Society B: Biological Sciences 360, 1945-1958. DOI: 10.1098/rstb.2005.1726

    • Search Google Scholar
    • Export Citation
  • de Meester L., Gomez A., Okamura S., Schwenk K. (2002). The monopolization hypothesis and the dispersal-gene flow paradox in aquatic organisms. Acta Oecologica 23, 121-135. DOI: 10.1016/S1146-609X(02)01145-1

    • Search Google Scholar
    • Export Citation
  • Decker H. (1969). Phytonematologie. Berlin, Germany, Deutscher Landwirtschftsverlag.

  • Derycke S., Backeljau T., Moens T. (2013). Dispersal and gene flow in free-living marine nematodes. Frontiers in Zoology 10, 1-12. DOI: 10.1186/1742-9994-10-1

    • Search Google Scholar
    • Export Citation
  • Geiger M.F., Astrin J.J., Borsch T., Burkhardt U., Grobe P., Hand R., Hausmann A., Hohberg K., Krogmann L., Lutz M. (2016). How to tackle the molecular species inventory for an industrialized nation-lessons from the first phase of the German Barcode of Life initiative GBOL (2012-2015). Genome 59, 1-10. DOI: 10.1139/gen-2015-0185

    • Search Google Scholar
    • Export Citation
  • Hajibabaei M., Janzen D.H., Burns J.M., Hallwachs W., Hebert P.D. (2006). DNA barcodes distinguish species of tropical Lepidoptera. Proceedings of the National Academy of Sciences of the United States of America 103, 968-971. DOI: 10.1073/pnas.0510466103

    • Search Google Scholar
    • Export Citation
  • Hebert P.D., Cywinska A., Ball S.L., deWaard J.R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society B: Biological Sciences 270, 313-321. DOI: 0.1098/rspb.2002.2218

    • Search Google Scholar
    • Export Citation
  • Hebert P.D., Stoeckle M.Y., Zemlak T.S., Francis C.M. (2004). Identification of birds through DNA barcodes. PLoS Biology 2, 1657-1663. DOI: 10.1371/journal.pbio.0020312

    • Search Google Scholar
    • Export Citation
  • Hohberg K., Traunspurger W. (2005). Predator-prey interaction in soil food web: functional response, size-dependent foraging efficiency, and the influence of soil texture. Biology and Fertility of Soils 41, 419-427. DOI: 10.1007/s00374-005-0852-9

    • Search Google Scholar
    • Export Citation
  • Holterman M., Rybarczyk K., van den Elsen S., van Megen H., Mooyman P., Peña-Santiago R., Bongers T., Bakker J., Helder J. (2008). A ribosomal DNA-based framework for the detection and quantification of stress-sensitive nematode families in terrestrial habitats. Molecular Ecology Resources 8, 23-34. DOI: 10.1111/j.1471-8286.2007.01963.x

    • Search Google Scholar
    • Export Citation
  • Holterman M., Karssen G., van den Elsen S., van Megen H., Bakker J., Helder J. (2009). Small subunit rDNA-based phylogeny of the Tylenchida sheds light on relationships among some high-impact plant-parasitic nematodes and the evolution of plant feeding. Phytopathology 99, 227-235. DOI: 10.1094/PHYTO-99-3-0227

    • Search Google Scholar
    • Export Citation
  • Hugot J.-P., Baujard P., Morand S. (2001). Biodiversity in helminths and nematodes as a field of study: an overview. Nematology 3, 199-208. DOI: 10.1163/156854101750413270

    • Search Google Scholar
    • Export Citation
  • Ingham R.E., Trofymow J.A., Ingham E.R., Coleman D.C. (1985). Interactions of bacteria, fungi, and their nematode grazers: effects on nutrient cycling and plant growth. Ecological Monographs 55, 119-140. DOI: 10.2307/1942528

    • Search Google Scholar
    • Export Citation
  • Janzen D.H., Hajibabaei M., Burns J.M., Hallwachs W., Remigio E., Hebert P.D. (2005). Wedding biodiversity inventory of a large and complex Lepidoptera fauna with DNA barcoding. Philosophical Transactions of the Royal Society B: Biological Sciences 360, 1835-1845. DOI: 10.1098/rstb.2005.1715

    • Search Google Scholar
    • Export Citation
  • Jörger K.M., Norenburg J.L., Wilson N.G., Schrödl M. (2012). Barcoding against a paradox? Combined molecular species delineations reveal multiple cryptic lineages in elusive meiofaunal sea slugs. BMC Evolutionary Biology 12, 1-18. DOI: 10.1186/1471-2148-12-245

    • Search Google Scholar
    • Export Citation
  • Lambshead P.I. (1993). Recent developments in marine benthic biodiversity research. Oceanis 19, 5-24.

  • Lejzerowicz F., Esling P., Pillet L., Wilding T.A., Black K.D., Pawlowski J. (2015). High-throughput sequencing and morphology perform equally well for benthic monitoring of marine ecosystems. Scientific Reports 5, 1-10. DOI: 10.1038/srep13932

    • Search Google Scholar
    • Export Citation
  • Liao D. (1999). Concerted evolution: molecular mechanism and biological implications. The American Journal of Human Genetics 64, 24-30. DOI: 10.1086/302221

    • Search Google Scholar
    • Export Citation
  • Loof P.A.A. (1999). Nematoda: Adenophorea (Dorylaimida). In: Schwoerbel J., Zwick P. (Eds). Süßwasserfauna von Mitteleuropa, 4/2-2. Heidelberg, Berlin, Spektrum.

    • Search Google Scholar
    • Export Citation
  • Loof P.A.A. (2001). Nematoda: Secernentea (Tylenchida, Aphelenchida). In: Schwoerbel J., Zwick P. (Eds). Süßwasserfauna von Mitteleuropa, 4/1-1. Heidelberg, Berlin, Spektrum.

    • Search Google Scholar
    • Export Citation
  • Lydeard C., Cowie R.H., Ponder W.F., Bogan A.E., Bouchet P., Clark S.A., Cummings K.S., Frest T.J., Gargominy O., Herbert D.G. (2004). The global decline of nonmarine mollusks. BioScience 54, 321-330. DOI: 10.1641/0006-3568(2004)054[0321:TGDONM]2.0.CO;2

    • Search Google Scholar
    • Export Citation
  • Maddison W.P., Knowles L.L. (2006). Inferring phylogeny despite incomplete lineage sorting. Systematic Biology 55, 21-30. DOI: 10.1080/10635150500354928

    • Search Google Scholar
    • Export Citation
  • Mahé F., Mayor J., Bunge J., Chi J., Siemensmeyer T., Stoeck T., Wahl B., Paprotka T., Filker S., Dunthorn M. (2015). Comparing high-throughput platforms for sequencing the V4 Region of SSU-rDNA in environmental microbial eukaryotic diversity surveys. The Journal of Eukaryotic Microbiology 62, 338-345. DOI: 10.1111/jeu.12187

    • Search Google Scholar
    • Export Citation
  • Majdi N., Traunspurger W. (2015). Free-living nematodes in the freshwater food web: a review. Journal of Nematology 47, 28-44.

  • Majdi N., Threis I., Traunspurger W. (2017). It’s the little things that count: Meiofaunal density and production in the sediment of two headwater streams. Limnology and Oceanography 62, 151-163. DOI: 10.1002/lno.10382

    • Search Google Scholar
    • Export Citation
  • Markmann M., Tautz D. (2005). Reverse taxonomy: an approach towards determining the diversity of meiobenthic organisms based on ribosomal RNA signature sequences. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences 360, 1917-1924. DOI: 10.1098/rstb.2005.1723

    • Search Google Scholar
    • Export Citation
  • Meyer C.P., Paulay G. (2005). DNA barcoding: error rates based on comprehensive sampling. PLoS Biology 3, e422. DOI: 10.1371/journal.pbio.0030422

    • Search Google Scholar
    • Export Citation
  • Mora C., Tittensor D.P., Adl S., Simpson A.G., Worm B. (2011). How many species are there on Earth and in the ocean? PLoS Biology 9, e1001127. DOI: 10.1371/journal.pbio.1001127

    • Search Google Scholar
    • Export Citation
  • Mutanen M., Kekkonen M., Prosser S.W., Hebert P.D., Kaila L. (2015). One species in eight: DNA barcodes from type specimens resolve a taxonomic quagmire. Molecular Ecology Resources 15, 967-984. DOI: 10.1111/1755-0998.12361

    • Search Google Scholar
    • Export Citation
  • Nadler S. (2002). Species delimitation and nematode biodiversity: phylogenies rule. Nematology 4, 615-625. DOI: 10.1163/15685410260438908

    • Search Google Scholar
    • Export Citation
  • Nkem J.N., Wall D.H., Virginia R.A., Barrett J.E., Broos E.J., Porazinska D.L., Adams B.J. (2006). Wind dispersal of soil invertebrates in the McMurdo Dry Valleys, Antarctica. Polar Biology 29, 346-352. DOI: 10.1007/s00300-005-0061-x

    • Search Google Scholar
    • Export Citation
  • Norton D.C. (1978). Ecology of plant-parasitic nematodes. New York, NY, USA, Wiley.

  • Pfannkuche O., Thiel H. (1988). Sample processing. In: Higgins R.P., Thiel H. (Eds). Introduction to the study of Meiofauna. Washington, DC, USA, Smithsonian Institution Press, pp.  134-145.

    • Search Google Scholar
    • Export Citation
  • Prosser S.W., Velarde-Aguilar M.G., Leon-Regagnon V., Hebert P.D. (2013). Advancing nematode barcoding: a primer cocktail for the cytochrome C oxidase subunit I gene from vertebrate parasitic nematodes. Molecular Ecology Resources 13, 1108-1115. DOI: 10.1111/1755-0998.12082

    • Search Google Scholar
    • Export Citation
  • Puillandre N., Lambert A., Brouillet S., Achaz G. (2012). ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology 21, 1864-1877. DOI: 10.1111/j.1365-294X.2011.05239.x

    • Search Google Scholar
    • Export Citation
  • Ristau K., Steinfartz S., Traunspurger W. (2013). First evidence of cryptic species diversity and significant population structure in a widespread freshwater nematode morphospecies (Tobrilus gracilis). Molecular Ecology 22, 4562-4575. DOI: 10.1111/mec.12414

    • Search Google Scholar
    • Export Citation
  • Sands C.J., Convey P., Linse K., McInnes S.J. (2008). Assessing meiofaunal variation among individuals utilising morphological and molecular approaches: an example using the Tardigrada. BMC Ecology 8, 1-11. DOI: 10.1186/1472-6785-8-7

    • Search Google Scholar
    • Export Citation
  • Sauer J., Hausdorf B. (2012). A comparison of DNA-based methods for delimiting species in a Cretan land snail radiation reveals shortcomings of exclusively molecular taxonomy. Cladistics 28, 300-316. DOI: 10.1111/j.1096-0031.2011.00382.x

    • Search Google Scholar
    • Export Citation
  • Schenk J., Traunspurger W., Ristau K. (2016). Genetic diversity of widespread moss-dwelling nematode species in German beech forests. European Journal of Soil Biology 74, 23-31. DOI: 10.1016/j.ejsobi.2016.03.002

    • Search Google Scholar
    • Export Citation
  • Schmid-Araya J.M., Schmid P.E. (2000). Trophic relationships: integrating meiofauna into a realistic benthic food web. Freshwater Biology 44, 149-163. DOI: 10.1046/j.1365-2427.2000.00594.x

    • Search Google Scholar
    • Export Citation
  • Slatkin M. (1987). Gene flow and the geographic structure of natural populations. Science 236, 787-792.

  • Sonnenberg R., Nolte A.W., Tautz D. (2007). An evaluation of LSU rDNA D1-D2 sequences for their use in species identification. Frontiers in Zoology 4, 1-12. DOI: 10.1186/1742-9994-4-6

    • Search Google Scholar
    • Export Citation
  • Sturhan D., Hohberg K. (2016). Nematodes of the order Tylenchida in Germany – the non-phytoparasitic species. Soil Organisms 88, 19-41.

  • Suzuki Y., Nijhout H.F. (2006). Evolution of a polyphenism by genetic accommodation. Science 311, 650-652. DOI: 10.1126/science.1118888

  • Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30, 2725-2729. DOI: 10.1093/molbev/mst197

    • Search Google Scholar
    • Export Citation
  • Tavaré S. (1986). Some probabilistic and statistical problems in the analysis of DNA sequences. Lectures on Mathematics in the Life Sciences 17, 57-86.

    • Search Google Scholar
    • Export Citation
  • Traunspurger W. (2002). Nematoda. In: Rundle S.D., Robertson A.L., Schmid-Araya J.M. (Eds). Freshwater meiofauna: biology and ecology. Leiden, The Netherlands, Backhuys Publishers, pp.  63-104.

    • Search Google Scholar
    • Export Citation
  • Traunspurger W. (2014). Ecology of freshwater nematodes. In: Schmidt-Rhaesa A. (Ed.). Handbook of zoology; Gastrotricha, Cycioneuralia and Gnathifera, volume 2: Nematoda. Berlin, Germany, De Gruyter, pp.  153-169.

    • Search Google Scholar
    • Export Citation
  • Traunspurger W., Michiels I.C., Eyualem-Abebe (2006). Composition and distribution of free-living freshwater nematodes: global and local perspectives. In: Eyualem-Abebe, Andrássy I., Traunspurger W. (Eds). Freshwater nematodes: ecology and taxonomy. Wallingford, UK, CABI Publishing, pp.  46-76.

    • Search Google Scholar
    • Export Citation
  • van Megen H., van den Elsen S., Holterman M., Karssen G., Mooyman P., Bongers T., Holovachov O., Bakker J., Helder J. (2009). A phylogenetic tree of nematodes based on about 1200 full-length small subunit ribosomal DNA sequences. Nematology 11, 927-950. DOI: 10.1163/156854109X456862

    • Search Google Scholar
    • Export Citation
  • Vanschoenwinkel B., Gielen S., Seaman M., Brendonck L. (2009). Wind mediated dispersal of freshwater invertebrates in a rock pool metacommunity: differences in dispersal capacities and modes. Hydrobiologia 635, 363-372. DOI: 10.1007/s10750-009-9929-z

    • Search Google Scholar
    • Export Citation
  • Yang L., Tan Z., Wang D., Xue L., Guan M.-x., Huang T., Ronghua L. (2014). Species identification through mitochondrial rRNA genetic analysis. Scientific Reports 4, 1-11. DOI: 10.1038/srep04089

    • Search Google Scholar
    • Export Citation
  • Yeates G.W., Bongers T., De Goede R.G.M., Freckman D.W., Georgieva S.S. (1993). Feeding habits in soil nematode families and genera – an outline for soil ecologists. Journal of Nematology 25, 315-331.

    • Search Google Scholar
    • Export Citation

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 369 165 28
Full Text Views 227 13 4
PDF Downloads 24 11 3