Transcriptome analysis of Meloidogyne incognita encumbered by Pasteuria penetrans endospores provides new insights into bacteria and nematode interaction

in Nematology
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Root-knot nematodes (RKN, Meloidogyne spp.) are one of the most harmful pests in agriculture. Pasteuria penetrans, an obligate hyperparasite of RKN, is an effective biological control agent. However, little is known about the molecular mechanisms of interaction between P. penetrans and the second-stage juvenile (J2) of Meloidogyne incognita. Here, we used transcriptome sequencing to characterise the differential expression profiles between control J2 of M. incognita and J2 encumbered by P. penetrans endospores. A total of 445 genes were found to be differentially expressed, including 406 up-regulated and 39 down-regulated genes. Thirty-seven putative immune-related genes encoding collagens, cytochrome P450, lysozymes and other active proteins were identified. Genes involved in the ‘biosynthesis of unsaturated fatty acids’ pathway and several core sets of immune effectors were up-regulated, indicating conserved immune mechanisms among different nematodes. Down-regulation of cytochrome P450-related genes might suggest a specific defence response of M. incognita encumbered by P. penetrans endospores.

Transcriptome analysis of Meloidogyne incognita encumbered by Pasteuria penetrans endospores provides new insights into bacteria and nematode interaction

in Nematology

Sections

References

  • AbadP.GouzyJ.AuryJ.M.Castagnone-SerenoP.DanchinE.G.DeleuryE.Perfus-BarbeochL.AnthouardV.ArtiguenaveF.BlokV.C. (2008). Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nature Biotechnology 26909-915. DOI: 10.1038/nbt.1482

  • AndersS.HuberW. (2010). Differential expression analysis for sequence count data. Genome Biology 11R106. DOI: 10.1186/gb-2010-11-10-r106

  • BlaxterM.L. (2003). Nematoda: genes, genomes and the evolution of parasitism. Advances in Parasitology 54101-195. DOI: 10.1016/S0065-308X(03)54003-9

  • CalderP.C.KewS. (2002). The immune system: a target for functional foods? British Journal of Nutrition 88(Suppl. 2) S165-S176. DOI: 10.1079/bjn2002682

  • ChitwoodD.J. (2003). Nematicides. In: PlimmerJ.R. (Ed.). Encyclopedia of agrochemicals. New York, NY, USAJohn Wiley & Sons, Inc. pp.  1104-1115. DOI: 10.1002/047126363X.agr171

  • DaviesK.G. (2005). Interactions between nematodes and microorganisms: bridging ecological and molecular approaches. Advances in Applied Microbiology 5753-78. DOI: 10.1016/s0065-2164(05)57002-3

  • DaviesK.G. (2009). Understanding the interaction between an obligate hyperparasitic bacterium, Pasteuria penetrans and its obligate plant-parasitic nematode host, Meloidogyne spp. In: JoanneP.W. (Ed.). Advances in parasitology. London, UKAcademic Press pp.  211-245. DOI: 10.1016/S0065-308X(08)00609-X

  • DaviesK.G.SpiegelY. (2011). Biological control of plant-parasitic nematodes: towards understanding field variation through molecular mechanisms. In: JonesJ.GheysenG.FenollC. (Eds). Genomics and molecular genetics of plant-nematode interactions. Dordrecht, The NetherlandsSpringer pp.  493-516. DOI: 10.1007/978-94-007-0434-3_23

  • DaviesK.G.WilliamsonV. (2006). Host specificity exhibited by populations of endospores of Pasteuria penetrans to the juvenile and male cuticles of Meloidogyne hapla. Nematology 8475-476. DOI: 10.1163/156854106778493493

  • DaviesK.G.KerryB.R.FlynnC.A. (1988). Observations on the pathogenicity of Pasteuria penetrans, a parasite of root-knot nematodes. Annals of Applied Biology 112491-501. DOI: 10.1111/j.1744-7348.1988.tb02086.x

  • DaviesK.G.RoweJ.A.WilliamsonV.M. (2008). Inter- and intra-specific cuticle variation between amphimictic and parthenogenetic species of root-knot nematode (Meloidogyne spp.) as revealed by a bacterial parasite (Pasteuria penetrans). International Journal for Parasitology 38851-859. DOI: 10.1016/j.ijpara.2007.11.007

  • DieterichC.CliftonS.W.SchusterL.N.ChinwallaA.DelehauntyK.DinkelackerI.FultonL.FultonR.GodfreyJ.MinxP. (2008). The Pristionchus pacificus genome provides a unique perspective on nematode lifestyle and parasitism. Nature Genetics 401193-1198. DOI: 10.1038/ng.227

  • EngelmannI.GriffonA.TichitL.Montañana-SanchisF.WangG.ReinkeV.WaterstonR.H.HillierL.W.EwbankJ.J. (2011). A comprehensive analysis of gene expression changes provoked by bacterial and fungal infection in C. elegans. PLoS ONE 6e19055. DOI: 10.1371/journal.pone.0019055

  • GiannakouI.O.PembrokeB.GowenS.R.DaviesK.G. (1997). Effects of long term storage and above normal temperatures on spore adhesion of Pasteuria penetrans and infection of the root-knot nematode Meloidogyne javanica. Nematologica 43185-192. DOI: 10.1163/004825997X00051

  • GötzS.García-GómezJ.M.TerolJ.WilliamsT.D.NagarajS.H.NuedaM.J.RoblesM.TalónM.DopazoJ.ConesaA. (2008). High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Research 363420-3435. DOI: 10.1093/nar/gkn176

  • GrabherrM.G.HaasB.J.YassourM.LevinJ.Z.ThompsonD.A.AmitI.AdiconisX.FanL.RaychowdhuryR.ZengQ. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 29644-652. DOI: 10.1038/nbt.1883

  • HarrisT.W.AntoshechkinI.BieriT.BlasiarD.ChanJ.ChenW.J.De La CruzN.DavisP.DuesburyM.FangR. (2010). WormBase: a comprehensive resource for nematode research. Nucleic Acids Research 38D463-D467. DOI: 10.1093/nar/gkp952

  • HonkakoskiP.NegishiM. (2000). Regulation of cytochrome P-450 (CYP) genes by nuclear receptors. Biochemical Journal 347321-337. DOI: 10.1042/bj3470321

  • IritiM.FaoroF. (2007). Review of innate and specific immunity in plants and animals. Mycopathologia 16457-64. DOI: 10.1007/s11046-007-9026-7

  • LivakK.J.SchmittgenT.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔΔCT method. Methods 25402-408. DOI: 10.1006/meth.2001.1262

  • LuY.ZouX.X.HuangH.Q.LiuM.BaoS.X. (2016). [ Vitality and survival of Meloidogyne incognita adsorbed by Pasteuria penetrans.] Journal of Jiangsu Normal University 3453-56.

  • LuntD.H.KumarS.KoutsovoulosG.BlaxterM. (2014). The complex hybrid origins of the root knot nematodes revealed through comparative genomics. PeerJ 2e356. DOI: 10.7717/peerj.356

  • MaoX.CaiT.OlyarchukJ.G.WeiL. (2005). Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 213787-3793. DOI: 10.1093/bioinformatics/bti430

  • McTaggartS.J.CézardT.GarbuttJ.S.WilsonP.J.LittleT.J. (2015). Transcriptome profiling during a natural host-parasite interaction. BMC Genomics 16643. DOI: 10.1186/s12864-015-1838-0

  • NandakumarM.TanM.W. (2008). Gamma-linolenic and stearidonic acids are required for basal immunity in Caenorhabditis elegans through their effects on p38 MAP kinase activity. PLoS Genetics 4e1000273. DOI: 10.1371/journal.pgen.1000273

  • NicolJ.TurnerS.CoyneD.Den NijsL.HocklandS.MaafiZ. (2011). Current nematode threats to world agriculture. In: JonesJ.GheysenG.FenollC. (Eds). Genomics and molecular genetics of plant-nematode interactions. Dordrecht, The NetherlandsSpringer pp.  21-43. DOI: 10.1007/978-94-007-0434-3_2

  • OppermanC.H.BirdD.M.WilliamsonV.M.RokhsarD.S.BurkeM.CohnJ.CromerJ.DienerS.GajanJ.P.GrahamS. (2008). Sequence and genetic map of Meloidogyne hapla: a compact nematode genome for plant parasitism. Proceedings of the National Academy of Sciences of the United States of America 10514802-14807. DOI: 10.1073/pnas.0805946105

  • O’RourkeD.BabanD.DemidovaM.MottR.HodgkinJ. (2006). Genomic clusters, putative pathogen recognition molecules, and antimicrobial genes are induced by infection of C. elegans with M. nematophilum. Genome Research 161005-1016. DOI: 10.1101/gr.50823006

  • ReichertK.MenzelR. (2005). Expression profiling of five different xenobiotics using a Caenorhabditis elegans whole genome microarray. Chemosphere 61229-237. DOI: 10.1016/j.chemosphere.2005.01.077

  • SayreR.M.WerginW.P. (1977). Bacterial parasite of a plant nematode: morphology and ultrastructure. Journal of Bacteriology 1291091-1101.

  • SharmaS.B.DaviesK.G. (1996). Characterisation of Pasteuria isolated from Heterodera cajani using morphology, pathology and serology of endospores. Systematics and Applied Microbiology 19106-112. DOI: 10.1016/S0723-2020(96)80017-8

  • SiddiquiZ.A.MahmoodI. (1999). Role of bacteria in the management of plant parasitic nematodes: a review. Bioresource Technology 69167-179. DOI: 10.1016/S0960-8524(98)00122-9

  • SimonsenK.T.GallegoS.F.FaergemanN.J.KallipolitisB.H. (2012). Strength in numbers: “omics” studies of C. elegans innate immunity. Virulence 3477-484. DOI: 10.4161/viru.21906

  • SinhaA.RaeR.IatsenkoI.SommerR.J. (2012). System wide analysis of the evolution of innate immunity in the nematode model species Caenorhabditis elegans and Pristionchus pacificus. PLoS ONE 7e44255. DOI: 10.1371/journal.pone.0044255

  • StirlingG.R. (1985). Host specificity of Pasteuria penetrans within the genus Meloidogyne. Nematologica 31203-209. DOI: 10.1163/187529285X00265

  • StoreyJ.D.TibshiraniR. (2003). Statistical significance for genomewide studies. Proceedings of the National Academy of Sciences of the United States of America 1009440-9445. DOI: 10.1073/pnas.1530509100

  • TallA.R.Yvan-CharvetL. (2015). Cholesterol, inflammation and innate immunity. Nature Review of Immunology 15104-116. DOI: 10.1038/nri3793

  • TianB.YangJ.ZhangK.-Q. (2007). Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanisms of action, and future prospects. FEMS Microbiology and Ecology 61197-213. DOI: 10.1111/j.1574-6941.2007.00349.x

  • TianF.GaoX.ZhangL.WangX.WanX.JiangT.WuC.BiJ.LeiQ. (2016). Effects of n-3 PUFAs on intestinal mucosa innate immunity and intestinal microbiota in mice after hemorrhagic shock resuscitation. Nutrients 8609. DOI: 10.3390/nu8100609

  • TrapnellC.PachterL.SalzbergS.L. (2009). TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 251105-1111. DOI: 10.1093/bioinformatics/btp120

  • TrapnellC.WilliamsB.A.PerteaG.MortazaviA.KwanG.Van BarenM.J.SalzbergS.L.WoldB.J.PachterL. (2010). Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology 28511-515. DOI: 10.1038/nbt.1621

  • TrudgillD.L.BlokV.C. (2001). Apomictic, polyphagous root-knot nematodes: exceptionally successful and damaging biotrophic root pathogens. Annual Review of Phytopathology 3953-77. DOI: 10.1146/annurev.phyto.39.1.53

  • WilliamsonV.HusseyR. (1996). Nematode pathogenesis and resistance in plants. Plant Cell 81735-1745. DOI: 10.1105/tpc.8.10.1735

  • XiaoT.WangH.RuiK.ChenM. (2008). [ Identification of the root-knot nematodes on pepper in Hainan.] Plant Protection 3428-31.

  • XuG. (2010). [Isolation and expression analysis of MiMEK2 and MiLIN45 of plant nematode Meloidogyne incognita]. M.Sc. Thesis Chinese Academy of Agriculture Science Beijing China.

  • YoungM.D.WakefieldM.J.SmythG.K.OshlackA. (2010). Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biology 11R14. DOI: 10.1186/gb-2010-11-2-r14

  • ZouX.XiaoJ.HuangH.ZhangX.ZhangF.SunQ.LiuM.BaoS. (2015). Population diversity of from pepper fields and its genetic variation from single root-knot nematodes. Nematology 17865-876. DOI: 10.1163/15685411-00002912

Figures

  • View in gallery

    Number of Meloidogyne incognita unigenes assigned to gene ontology (GO) terms. The results were summarised in three major categories: biological process, cellular component and molecular function.

  • View in gallery

    Volcano plot of differentially expressed genes between Pasteuria penetrans endospore encumbered Meloidogyne incognita (MI_T) and the control (MI_C). Red, green and blue dots indicated the up-regulated, down-regulated and non-significantly changed genes, respectively. The q value (the corrected p value) was adjusted for multiple comparisons (Storey & Tibshirani, 2003). The parameters q value < 0.05 and fold change ⩾ 2 were used as thresholds to determine the significance of differentially expressed genes.

  • View in gallery

    Significantly enriched Gene Ontology (GO) terms of Meloidogyne incognita under the major groups. A: Significantly enriched GO terms under the major group of biological processes; B: Significantly enriched GO terms under the major group of molecular function.

  • View in gallery

    The top 20 KEGG pathways of Meloidogyne incognita enriched by up-regulated DEGs (A) and down-regulated DEGs (B). Rich factor indicated the ratio of the DEGs number and the annotated genes number in the pathway. The colours from purple to red indicate the decrease of the q value from 1.00 to 0.00. The dots on each line represent the enriched KEGG pathways that are marked on the left. The size of the dots corresponds to the number of genes; the larger the size, the more DEGs are involved in the related pathway.

  • View in gallery

    Validation of differentially expressed genes of Meloidogyne incognita identified from RNA-seq using quantitative qRT-PCR analysis. Bars = standard error. Asterisks indicate significant differences (P<0.05) between MI_C and MI_T.

  • View in gallery

    Flow chart of the experimental design.

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 103 96 1
Full Text Views 244 244 0
PDF Downloads 8 8 0
EPUB Downloads 0 0 0