Phenotyping dauer juvenile oxidative stress tolerance, longevity and persistence within wild type and inbred lines of the entomopathogenic nematode Heterorhabditis bacteriophora

in Nematology
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

The commercial use of the entomopathogenic nematode Heterorhabditis bacteriophora as a biocontrol agent against noxious insects is limited due to its relatively short shelf-life. Longevity of dauer juveniles (DJ) during storage and in transit to end users is considerably restricted by environmental stresses. As a derivative stress triggered by environmental factors, oxidative stress causes a strong internal metabolic imbalance leading to lifespan reduction. In this study, the relation between DJ oxidative stress tolerance and longevity in H. bacteriophora was investigated at 25 and 7°C. A strong and significant correlation between DJ oxidative stress tolerance and longevity during storage in Ringer’s solution (R=0.802 at 7°C; R=0.604 at 25°C) was recorded. Phenotyping of these traits was performed for 40 H. bacteriophora wild type strain and inbred line collections. At 25°C, the mean time survived in Ringer’s by 50% of the DJ (MTS50) ranged from 21 to 57 days, whereas under oxidative stress, survival was from 3 to 22 days. At 7°C, a maximum MTS50 of 94 days was assessed when DJ were stored in Ringer’s, while the maximum MTS50 was only 25 days with oxidative stress induction. The heritability of DJ tolerance to oxidative stress, determined by using homozygous inbred lines, is high (h2>0.9), an indication of a high probability for successful selective breeding. In a subset of preselected H. bacteriophora inbred lines, DJ oxidative stress tolerance correlated with the DJ survival (persistence) after application to sand (R=0.719). The study provides fundamental data required for a genetic breeding programme to produce hybrids with improved stress tolerance and prolonged shelf-life and soil persistence.

Phenotyping dauer juvenile oxidative stress tolerance, longevity and persistence within wild type and inbred lines of the entomopathogenic nematode Heterorhabditis bacteriophora

in Nematology

Sections

References

  • AanG.J.ZainudinM.S.A.KarimN.A.NgahW.Z.W. (2013). Effect of the tocotrienol-rich fraction on the lifespan and oxidative biomarkers in Caenorhabditis elegans under oxidative stress. Clinics 68599-604. DOI: 10.6061/clinics/2013(05)04

  • AddisT.DemissieS.StrauchO.EhlersR.-U. (2016). Influence of bacterial density and mating on life history traits of Heterorhabditis bacteriophora. Nematology 18963-972. DOI: 10.1163/15685411-00002966

  • AnbesseS.SumayaN.H.DörflerA.V.StrauchO.EhlersR.-U. (2013a). Stabilisation of heat tolerance traits in Heterorhabditis bacteriophora through selective breeding and creation of inbred lines in liquid culture. BioControl 5885-93. DOI: 10.1007/s10526-012-9467-x

  • AnbesseS.SumayaN.H.DörflerA.V.StrauchO.EhlersR.-U. (2013b). Selective breeding for desiccation tolerance in liquid culture provides genetically stable inbred lines of the entomopathogenic nematode Heterorhabditis bacteriophora. Applied Microbiology and Biotechnology 97731-739. DOI: 10.1007/s00253-012-4227-5

  • AndalóV.MoinoA.MaximinianoC.CamposV.P.MendoncaL.A. (2011). Influence of temperature and duration of storage on the lipid reserves of entomopathogenic nematodes. Revista Colombiana de Entomología 37203-209.

  • BernerM.EhlersR.-U.SchnetterW. (2001). Genetic variability and discrimination of isolates inbred lines and hybrids of Heterorhabditis bacteriophora via RAPD-PCR. In: 34th Annual Meeting of the Society for Invertebrate Pathology. Noordwijkerhout The Netherlands August 25-30 p. 7.

  • BrooksA.JohnsonT.E. (1991). Genetic specification of life span and self-fertility in recombinant-inbred strains of Caenorhabditis elegans. Heredity 6719-28. DOI: 10.1038/hdy.1991.60

  • CharlesworthB. (1987). The heritability of fitness. In: BradburyJ.W.AnderssonM.B. (Eds). Sexual selection: testing the alternatives. Chichester, UKWiley pp.  21-40.

  • CobbN.A. (1918). Estimating the nematode population of soil with special reference to the sugar-beet and root-gall nematodes Heterodera schachtii Schmidt and Heterodera radicicola (Greef) Müller and with a description of Tylencholaimus aequalis n. sp. Washington DC USAGovernment Printing Office.

  • CrichtonR.R.WilmetS.LegssyerR.WardR.J. (2002). Molecular and cellular mechanisms of iron homeostasis and toxicity in mammalian cells. Journal of Inorganic Biochemistry 919-18. DOI: 10.1016/S0162-0134(02)00461-0

  • CypserJ.R.JohnsonT.E. (2002). Multiple stressors in Caenorhabditis elegans induce stress hormesis and extended longevity. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences 57B109-B114. DOI: 10.1093/gerona/57.3.B109

  • EhlersR.-U.LunauS.Krasomil-OsterfeldK.OsterfeldK.H. (1998). Liquid culture of the entomopathogenic nematode-bacterium-complex Heterorhabditis megidis/P. luminescens. BioControl 4377-86. DOI: 10.1023/A:1009965922794

  • EhlersR.-U.OestergaardJ.HollmerS.WingenM.StrauchO. (2005). Genetic selection for heat tolerance and low temperature activity of the entomopathogenic nematode-bacterium-complex Heterorhabditis bacteriophora-Photorhabdus luminescens. Biocontrol 50699-716. DOI: 10.1007/s10526-005-5079-z

  • FalconerD.S. (1989). Introduction to quantitative genetics3rd edition. New York, NY, USALongman Scientific and Technical.

  • FalconerD.S.MackayT.F.C. (1996). Introduction to quantitative genetics4th edition. Harlow, UKLongman.

  • FanX.HominickW.M. (1991). Effects of low storage temperature on survival and infectivity of two Steinernema species (Nematoda: Steinernematidae). Revue de Nématologie 14407-412.

  • FinkelT.HolbrookN.J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature 408239-247. DOI: 10.1038/35041687

  • FinneyD.J. (1952). Probit analysis. Journal of the Institute of Actuaries 78388-390.

  • FisherR.A. (1930). The genetical theory of natural selection: a complete variorum edition. Oxford, UKOxford University Press.

  • FittersP.F.GriffinC.T. (2006). Survival, starvation, and activity in Heterorhabditis megidis (Nematoda: Heterorhabditidae). Biological Control 3782-88. DOI: 10.1016/j.biocontrol.2005.08.005

  • GeorgisR.KayaH.K. (1998). Formulation of entomopathogenic nematodes. In: BurgesH.D. (Ed.). Formulation of microbial biopesticides: beneficial microorganisms nematodes and seed treatments. Dordrecht, The NetherlandsKluwer Academic Publishers pp.  289-308. DOI: 10.1007/978-94-011-4926-6

  • GlazerI. (2002). Survival biology. In: GauglerR. (Ed.). Entomopathogenic nematology. Wallingford, UKCAB International pp.  169-187.

  • GrewalP.S.PetersA. (2005). Formulation and quality control of entomopathogenic nematodes. In: GrewalP.S.EhlersR.-U.Shapiro-IlanD. (Eds). Nematodes as biocontrol agents. Wallingford, UKCAB International pp.  79-90. DOI: 10.1079/9780851990170.0079

  • GrewalP.S.WangX.TaylorR.A.J. (2002). Dauer juvenile longevity and stress tolerance in natural populations of entomopathogenic nematodes: is there a relationship? International Journal for Parasitology 32717-725. DOI: 10.1016/S0020-7519(02)00029-2

  • GrewalP.S.EhlersR.-U.Shapiro-IlanD.I. (Eds) (2005). Nematodes as biocontrol agents. Wallingford, UKCAB International. DOI: 10.1079/9780851990170.0000

  • GrewalP.S.BaiX.JagdaleG.B. (2011). Longevity and stress tolerance. In: PerryR.N.WhartonD.A. (Eds). Molecular and physiological basis of nematode survival. Wallingford, UKCAB International pp.  157-181. DOI: 10.1079/9781845936877.0157

  • GustafssonL. (1986). Lifetime reproductive success and heritability: empirical support for Fisher’s fundamental theorem. The American Naturalist 128761-764.

  • HarmanD. (1956). Aging: a theory based on free radical and radiation chemistry. Journal of Gerontology 11298-300. DOI: 10.1093/geronj/11.3.298

  • HartlD.L.ClarkA.G.ClarkA.G. (1989). Principles of population genetics2nd edition. Sunderland, MA, USASinauer Associates.

  • HassB.DownesM.GriffinC. (2002). Persistence of four Heterorhabditis spp. isolates in soil: role of lipid reserves. Journal of Nematology 34151-158.

  • HominickW.M. (2002). Biogeography. In: GauglerR. (Ed.). Entomopathogenic nematology. Wallingford, UKCAB International pp.  115-143.

  • HondaY.HondaS. (1999). The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in Caenorhabditis elegans. FASEB Journal 131385-1393.

  • JohnigkS.A.EhlersR.-U. (1999a). Juvenile development and life cycle of Heterorhabditis bacteriophora and H. indica (Nematoda: Heterorhabditidae). Nematology 1251-260. DOI: 10.1163/156854199508234

  • JohnigkS.A.EhlersR.-U. (1999b). Endotokia matricida in hermaphrodites of Heterorhabditis spp. and the effect of the food supply. Nematology 1717-726. DOI: 10.1163/156854199508748

  • JohnigkS.A.HollmerS.StrauchO.WyssU.EhlersR.-U. (2002). Heritability of the liquid culture mass production potential of the entomopathogenic nematode Heterorhabditis bacteriophora. Biocontrol Science and Technology 12267-276. DOI: 10.1080/09583150120124504

  • JohnsonT.E.WoodW.B. (1982). Genetic analysis of life-span in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America 796603-6607.

  • JohnsonT.E.de CastroE.de CastroS.H.CypserJ.R.HendersonS.TedescoP.M. (2001). Relationship between increased longevity and stress resistance as assessed through gerontogene mutations in Caenorhabditis elegans. Experimental Gerontology 361609-1617.

  • JohnsonT.E.HendersonS.MurakamiS.de CastroE.de CastroS.H.CypserJ.RikkeB.TedescoP.LinkC. (2002). Longevity genes in the nematode Caenorhabditis elegans also mediate increased resistance to stress and prevent disease. Journal of Inherited Metabolic Disease 25197-206. DOI: 10.1023/A:1015677828407

  • JungK. (1996). Storage of entomopathogenic nematodes of the genus Heterorhabditis at two temperatures. Effect on infectivity, energy reserve and number of bacteria. IOBC/WPRS Bulletin 19103-106.

  • KnoeflerD.ThamsenM.KoniczekM.NiemuthN.J.DiederichA.K.JakobU. (2012). Quantitative in vivo redox sensors uncover oxidative stress as an early event in life. Molecular Cell 47767-776. DOI: 10.1016/j.molcel.2012.06.016

  • KumstaC.ThamsenM.JakobU. (2011). Effects of oxidative stress on behavior, physiology, and the redox thiol proteome of Caenorhabditis elegans. Antioxidants & Redox Signaling 141023-1037. DOI: 10.1089/ars.2010.3203

  • KurtzB.ToepferS.EhlersR.-U.KuhlmannU. (2007). Assessment of establishment and persistence of entomopathogenic nematodes for biological control of western corn rootworm. Journal of Applied Entomology 131420-425. DOI: 10.1111/j.1439-0418.2007.01202.x

  • LarsenP.L. (1993). Aging and resistance to oxidative damage in Caenorhabditis elegans. Proceedings of the National Academy of Sciencesof the United States of America 908905-8909.

  • LeeD.L.AtkinsonH.J. (1976). Physiology of nematodes. London, UKMacmillan.

  • LewisE.SelvanS.CampbellJ.GauglerR. (1995). Changes in foraging behaviour during the infective stage of entomopathogenic nematodes. Parasitology 110583-590. DOI: 10.1017/S0031182000065306

  • MentiH.PatelM.N.WrightD.J.PerryR.N. (2003). Lipid utilisation during storage of the entomopathogenic nematodes Steinernema feltiae and Heterorhabditis megidis from Greece and the UK. Nematology 531-37. DOI: 10.1163/156854102765216669

  • MukukaJ.StrauchO.WaeyenbergeL.ViaeneN.MoensM.EhlersR.-U. (2010a). Heat tolerance among different strains of the entomopathogenic nematode Heterorhabditis bacteriophora. BioControl 55423-434. DOI: 10.1007/s10526-009-9255-4

  • MukukaJ.StrauchO.EhlersR.-U. (2010b). Variability in desiccation tolerance among different strains of the entomopathogenic nematode Heterorhabditis bacteriophora. Nematology 12711-720. DOI: 10.1163/138855409X12607871174454

  • MuñozM.J.RiddleD.L. (2003). Positive selection of Caenorhabditis elegans mutants with increased stress resistance and longevity. Genetics 163171-180.

  • MurakamiS.JohnsonT.E. (1996). A genetic pathway conferring life extension and resistance to UV stress in Caenorhabditis elegans. Genetics 1431207-1218.

  • MurphyC.T.McCarrollS.A.BargmannC.I.FraserA.KamathR.S.AhringerJ.LiH.KenyonC. (2003). Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424277-283. DOI: 10.1038/nature01789

  • MuschiolD.TraunspurgerW. (2007). Life cycle and calculation of the intrinsic rate of natural increase of two bacterivorous nematodes, Panagrolaimus sp. and Poikilolaimus sp. from chemoautotrophic Movile Cave, Romania. Nematology 9271-284. DOI: 10.1163/156854107780739117

  • NimkingratP.KhanamS.StrauchO.EhlersR.-U. (2013). Hybridisation and selective breeding for improvement of low temperature activity of the entomopathogenic nematode Steinernema feltiae. BioControl 58417-426. DOI: 10.1080/09583157.2012.758238

  • OlahovaM.TaylorS.R.KhazaipoulS.WangJ.MorganB.A.MatsumotoK.BlackwellT.K.VealE.A. (2008). A redox-sensitive peroxiredoxin that is important for longevity has tissue- and stress-specific roles in stress resistance. Proceedings of the National Academy of Sciences of the United States of America 10519839-19844. DOI: 10.1073/pnas.0805507105

  • PatelM.N.StolinskiM.WrightD.J. (1997). Neutral lipids and the assessment of infectivity in entomopathogenic nematodes: observations on four Steinernema species. Parasitology 114489-496.

  • PetrivI.RachubinskiR.A. (2004). Lack of peroxisomal catalase causes a progeric phenotype in Caenorhabditis elegans. Journal of Biological Chemistry 27919996-20001. DOI: 10.1074/jbc.M400207200

  • PilzC.ToepferS.KnuthP.StrimitzerT.HeimbachU.GrabenwegerG. (2014). Persistence of the entomoparasitic nematode Heterorhabditis bacteriophora in maize fields. Journal of Applied Entomology 138202-212. DOI: 10.1111/j.1439-0418.2012.01743.x

  • PriceG.R. (1972). Fisher’s ‘fundamental theorem’ made clear. Annals of Human Genetics 36129-140. DOI: 10.1111/j.1469-1809.1972.tb00764.x

  • PriceT.SchluterD. (1991). On the low heritability of life-history traits. Evolution 45853-861. DOI: 10.1111/j.1558-5646.1991.tb04354.x

  • ReynoldsR.M.PhillipsP.C. (2013). Natural variation for lifespan and stress response in the nematode Caenorhabditis remanei. PLoS ONE 8e58212. DOI: 10.1371/journal.pone.0058212

  • RheeS.G.YangK.S.KangS.W.WooH.A.ChangT.S. (2005). Controlled elimination of intracellular H2O2: regulation of peroxiredoxin, catalase, and glutathione peroxidase via post-translational modification. Antioxidants & Redox Signaling 7619-626. DOI: 10.1089/ars.2005.7.619

  • SelvanS.GauglerR.LewisE.E. (1993). Biochemical energy reserves of entomopathogenic nematodes. Journal of Parasitology 79167-172. DOI: 10.2307/3283503

  • ŚlesakI.LibikM.KarpinskaB.KarpinskiS.MiszalskiZ. (2007). The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses. Acta Biochimica Polonica – English Edition 5439-50.

  • StrauchO.NiemannI.NeumannA.SchmidtA.PetersA.EhlersR.-U. (2000). Storage and formulation of the entomopathogenic nematodes Heterorhabditis indica and H. bacteriophora. BioControl 45483-500. DOI: 10.1023/A:1026528727365

  • StrauchO.OestergaardJ.HollmerS.EhlersR.-U. (2004). Genetic improvement of the desiccation tolerance of the entomopathogenic nematode Heterorhabditis bacteriophora through selective breeding. BioControl 31218-226. DOI: 10.1016/j.biocontrol.2004.03.009

  • SusurlukA.EhlersR.-U. (2008). Field persistence of the entomopathogenic nematode Heterorhabditis bacteriophora in different crops. BioControl 53627-641. DOI: 10.1007/s10526-007-9104-2

  • ThamsenM. (2011). The role of oxidative stress in C. elegans aging. Ph.D. Thesis Johannes Gutenberg-University Mainz Germany.

  • ToepferS.BurgerR.EhlersR.-U.PetersA.KuhlmannU. (2010). Controlling Western Corn Rootworm larvae with entomopathogenic nematodes: effect of application techniques on plant-scale efficacy. Journal of Applied Entomology 134467-480. DOI: 10.1111/j.1439-0418.2009.01469.x

  • WrightS. (1931). Evolution in Mendelian populations. Genetics 1697-159.

  • YanaseS.YasudaK.IshiiN. (2002). Adaptive responses to oxidative damage in three mutants of Caenorhabditis elegans (age-1, mev-1 and daf-16) that affect life span. Mechanisms of Ageing and Development 1231579-1587. DOI: 10.1016/S0047-6374(02)00093-3

Figures

  • View in gallery

    Mean time survived by 50% (MTS50) and 10% (MTS10) of 40 Heterorhabditis bacteriophora strain and inbred line dauer juvenile (DJ) populations after oxidative stress (70 mM H2O2) induction and storage at 25°C. Error bars indicate standard deviation of three independent trials with three replications. Different letters above error bars indicate significant differences of the MTS50 between nematode strains and lines (Tukey’s HSD test at P0.0001).

  • View in gallery

    Mean time survived by 50% (MTS50) and 10% (MTS10) of 40 Heterorhabditis bacteriophora strain and inbred line dauer juvenile (DJ) populations after oxidative stress (70 mM H2O2) induction and storage at 7°C. Error bars indicate standard deviation of three independent trials with three replications. Different letters above error bars indicate significant differences of the MTS50 between nematode strains and lines (Tukey’s HSD test at P0.0001).

  • View in gallery

    Mean time survived by 50% (MTS50) and 10% (MTS10) of 40 Heterorhabditis bacteriophora strain and inbred line dauer juvenile (DJ) populations stored in Ringer’s solution at 25°C. Error bars indicate standard deviation of three independent trials with three replications. Different letters above error bars indicate significant differences of the MTS50 between nematode strains and lines (Tukey’s HSD test at P0.0001).

  • View in gallery

    Mean time survived by 50% (MTS50) and 10% (MTS10) of 40 Heterorhabditis bacteriophora strain and inbred line dauer juvenile (DJ) populations stored in Ringer’s solution at 7°C. Error bars indicate SD of three independent trials with three replications. Different letters above error bars indicate significant differences (Tukey’s HSD test at P0.0001).

  • View in gallery

    Mean time survived by 50% (MTS50) and 10% (MTS10) of selected Heterorhabditis bacteriophora dauer juvenile (DJ) populations in a sand bio-assay stored at 25°C. Error bars indicate SD of two independent trials with three replications. Different letters above error bars indicate significant differences (Tukey’s HSD test at P0.0001).

  • View in gallery

    Percentage dauer juvenile (DJ) survival of Heterorhabditis bacteriophora inbred lines (A, B) and crosses (C, D) after three weeks of incubation at 15°C and 25°C in the sand bio-assay. Nematodes were inoculated at 400 DJ and 6400 DJ per plate. Error bars indicates standard deviation of three replicates. Different letters on the error bars (lower case for ‘400’; upper case for ‘6400’) indicate significant differences in DJ survival (Tukey’s HSD test at P<0.05).

  • View in gallery

    Correlation between the mean time survived by 50 % (MTS50) of Heterorhabditis bacteriophora dauer juvenile (DJ) populations exposed to oxidative stress (70 mM H2O2) and after storage in Ringer’s solution and stored at (A) 25°C and (B) 7°C. Each data point represents an average of three replicates of three different batches (Pearson’s coefficient test, P0.05).

  • View in gallery

    Correlation between the mean time survived by 50% (MTS50) of Heterorhabditis bacteriophora dauer juvenile (DJ) populations (A) stored at 25°C and 7°C under oxidative stress and (B) between MTS50 in oxidative stress assay and persistence in the sand assay. Each data point represents an average of three replicates of three different batches (for A) and two batches (for B) (Pearson’s coefficient test, P0.05).

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 89 85 12
Full Text Views 206 206 0
PDF Downloads 7 7 0
EPUB Downloads 0 0 0