Soil nematode abundance and diversity from four vegetation types in Central Mexico

in Nematology
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Soil nematode abundance and MOTU diversity were estimated from a geographically broad area of Mexico that included four out of seven recognised vegetation types. Vegetation types were assessed for abundance and diversity of nematode communities and inferred ecological relationships between them. Soils were sampled from tropical rainforest, tropical dry deciduous forest, temperate coniferous forest and xerophytic shrub during 2013, 2014 and 2015. Fourteen sampling sites with ca 10-20 samples per site from 11 localities spread across Central Mexico were assessed. Altitudes sampled ranged from 113 m a.s.l. (tropical coastal plain) to 2400 m a.s.l. (Trans-Mexican Volcanic Belt). Samples were drawn from conserved and cultivated plots from each sampling site covering an area of ⩾100 m2. A total of 13 263 individuals from 25 identified families of nematodes were collected. Family abundance and complementarity indices between sites revealed to some extent the affinities between vegetation types. Nevertheless, statistical analyses revealed no differences between nematode family abundances between sites, only between families across all sites. Molecular operational taxonomic units (MOTU) methods were employed as a framework to assess biodiversity. From these, 77 high-quality sequences for taxonomic barcoding were recovered and later identified with morphological traits. Only six sequences matched at a 98-99% level with those reported in GenBank. Sequences amounted to a total of 41 MOTU, where 100% of the MOTU from both conserved and disturbed tropical rainforest, tropical dry deciduous forest and xerophytic shrub exhibited a ⩾3% cut-off genetic identity, whilst temperate coniferous forest and disturbed temperate coniferous forest showed 73% and 70% respectively. In addition, 12.2% MOTU were shared among localities and 87.8% exhibited an apparently locality-limited distribution. The potential for a considerable diversity of nematodes, as revealed from a small sample of MOTU diversity, is discussed.

Soil nematode abundance and diversity from four vegetation types in Central Mexico

in Nematology

Sections

References

Ballina GómezH.S.Herrera CantoE.Kantun PatC.Tun SuárezJ.Ruiz SánchezE. (2012). Diversidad de nematodos del suelo en una selva tropical mexicana. Fitosanidad 1697-100.

BongersT. (1990). The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia 8314-19. DOI: 10.1007/BF00324627

BongersT.BongersM. (1998). Functional diversity of nematodes. Applied Soil Ecology 10239-251. DOI: 10.1016/j.marenvres.2006.10.006

BrownG.G.FragosoC.BaroisI.RojasP.PatrónJ.C.BuenoJ.MorenoA.G.LavelleP.OrdazV.RodríguezC. (2001). Diversidad y rol funcional de la macrofauna edáfica en los ecosistemas tropicales mexicanos Acta Zoológica Mexicana (nueva serie). Número especial 179-110.

BrussaardL.Behan-PelletierV.M.BignellD.E.BrownV.K.DiddenW.FolgaraitP.FragosoC.WallD.GuptaV.V.S.R.HattoriT. (1997). Biodiversity and ecosystem functioning in soil. Ambio 26563-570.

CaronD.A.CountwayP.D.SavaiP.GastR.J.SchnetzerA.MoorthiS.D.DennettM.R.MoranD.M.JonesA.C. (2009). Defining DNA-based operational taxonomic units for microbial-eukaryote ecology. Applied and Environmental Microbiology 755797-5808. DOI: 10.1128/AEM.00298-09

ChallengerA.SoberónJ. (2008). Los ecosistemas terrestres. In: Capital natural de Mexico vol. I: Conocimiento actual de la biodiversidad. MexicoCONABIO pp.  87-108.

ColwellR.K.CoddingtonJ.A. (1994). Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences 345101-118. DOI: 10.1098/rstb.1994.0091

CreerS.FonsecaV.G.PorazinskaD.L.Giblin-DavisR.M.SungW.PowerD.M.PackerM.CarvalhoG.R.BlaxterM.L.LambsheadP.J.D. (2010). Ultrasequencing of the meiofaunal biosphere: practice, pitfalls and promises. Molecular Ecology 19(Suppl. 1) 4-20. DOI: 10.1111/j.1365-294X.2009.04473.x

Cruz AngónA. (Ed.). (2011). La biodiversidad en Veracruz: Estudio de Estado. Volumen I Contexto actual del estado y perspectivas de conservación de su biodiversidad. MexicoCONABIO (Comisión Nacional para el Conocimiento y Uso de la Biodiversidad), Gobierno del Estado de Veracruz, Universidad Veracruzana, Instituto de Ecología, A.C.

de GoedeR.G.M.BongersT. (1994). Nematode community structure in relation to soil and vegetation characteristics. Applied Soil Ecology 129-44. DOI: 10.1016/0929-1393(94)90021-3

De LeyP.Tandigan De LeyI.MorrisK.AbebeE.Mundo-OcampoM.YoderM.HerasJ.WaumannD.Rocha-OlivaresA.BurrA.H.J. (2005). An integrated approach to fast and informative morphological vouchering of nematodes for applications in molecular barcoding. Philosophical Transactions of the Royal Society B 3601945-1958. DOI: 10.1098/rstb.2005.1726

DecaënsT. (2010). Macroecological patterns in soil communities. Global Ecology and Biogeography 19287-302. DOI: 10.1111/j.1466-8238.2009.00517.x

DesgarennesD.Sánchez-NavaP.Peña-SantiagoR.CarriónG. (2009). Nematofauna asociada a la rizosfera de papas (Solanum tuberosum) cultivadas en la zona productora del Cofre de Perote, Veracruz, México. Revista Mexicana de Biodiversidad 80611-614.

EspinosaD.OceguedaS.Aguilar ZúñigaC.Flores VillelaÓ.Llorente-BousquetsJ. (2008). El conocimiento biogeográfico de las especies y su regionalización natural en Capital natural de Mexico vol. I: Conocimiento actual de la biodiversidad. MexicoCONABIO pp.  33-65.

EyualemA.BlaxterM. (2003). Comparison of biological, molecular, and morphological methods of species identification in a set of cultured Panagrolaimus isolates. Journal of Nematology 35119-128.

FerrariL.Orozco-EsquivelT.ManeaV.ManeaM. (2012). The dynamic history of the Trans-Mexican Volcanic Belt and the Mexico subduction zone. Tectonophysics 522-523122-149. DOI: 10.1016/j.tecto.2011.09.018

FerrisH. (2010a). Form and function: metabolic footprints of nematodes in the soil food web. European Journal of Soil Biology 4697-104. DOI: 10.1016/j.ejsobi.2010.01.003

FerrisH. (2010b). Contribution of nematodes to the structure and function of the soil food web. Journal of Nematology 4263-67.

FerrisH.BongersT.de GoedeR.G.M. (2001). A framework for soil food web diagnostics: extension of the nematode faunal analysis concept. Applied Soil Ecology 1813-29.

FitterA.H.GilliganC.HollingworthA.K.KleczkowskiA.TwymanR.M.PitchfordJ.W. & The Members of the NERC Soil Biodiversity Programme (2005). Biodiversity and ecosystem function in soil. Functional Ecology 19369-377. DOI: 10.1111/j.1365-2435.2005.00969.x

FloydR.AbebeE.PapertA.BlaxterM. (2002). Molecular barcodes for soil nematode identification. Molecular Ecology 11839-850. DOI: 10.1016/j.rmb.2017.01.002

FragosoC.Reyes-CastilloP.RojasP. (2001). La importancia de la biota edáfica en Mexico. Acta Zoologica Mexicana (nueva serie). Número especial 11-10.

Franco-NavarroF. (2009). Effect of four land use intensities on soil nematodes. In: BaroisI.HuisingE.J.OkothP.TrejoD.SantosM. (Eds). Belowground biodiversity in Sierra De Santa Marta Los Tuxtlas Veracruz México. Veracruz, MexicoUniversidad Veracruzana, Xalapa pp.  113-132.

Franco-NavarroF.Godinez-VidalD. (2006). Soil nematode community under four land use intensities in the Mexican tropic. Abstracts of the XXXVIII Annual Meeting of ONTA 26-30 June 2006 San José Costa Rica. Nematropica 36 125-126. [Abstr.]

Franco-NavarroF.Godinez-VidalD. (2017). Soil nematodes associated with different land uses in the Los Tuxtlas Biosphere Reserve, Veracruz, Mexico. Revista Mexicana de Biodiversidad 88136-145.

GoodeyJ.B. (1963). Soil and freshwater nematodes. London, UKMethuen & Co. Ltd.

GotelliN.J.ColwellR.K. (2011). Estimating species richness. In: MagurranA.E.McGillB.J. (Eds). Biological diversity frontiers in measurement and assessment. New York, NY, USAOxford University Press Inc. pp.  39-54.

GriffithsB.S.DonnS.NeilsonR.DaniellT. (2006). Molecular sequencing and morphological analysis of a nematode community. Applied Soil Ecology 32325-337. DOI: 10.1016/j.apsoil.2005.07.006

HazirC.KanzakiN.GulcuB.HazirS.Giblin-DavisR.M. (2015). Reverse taxonomy reveals Pristionchus maupasi (Diplogasterida: Diplogastridae) association with the soil-dwelling bee Andrena optata (Hymenoptera: Andrenidae) in Turkey. Florida Entomologist 98364-367. DOI: 10.1653/024.098.0160

Jiménez-GuiradoD.PeraltaM.Peña-SantiagoR. (2007). Nematoda. Mononchida, Dorylaimida I. In: Fauna Ibérica 30. Madrid, SpainMuseo Nacional de Ciencias Naturales. Consejo Superior de Investigaciones Cientificas.

KanzakiN.Giblin-DavisR.M.ScheffrahnR.H.TakiH.EsquivelA.DaviesK.A.HerreE.A. (2012). Reverse taxonomy for elucidating diversity of insect-associated nematodes: a case study with termites. PLoS ONE 7e43865. DOI: 10.1371/journal.pone.0043865

KatohK.StandleyD.M. (2014). MAFFT: iterative refinement and additional methods. In: RussellD.J. (Ed.). Multiple sequence alignment methods methods in molecular biologyVol. 1079Springer Science+Business Media, LLC pp.  131-146.

KatohK.MisawaK.KumaK.MiyataT. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 303059-3066.

KimenjuJ.W.KaranjaN.K.MutuaG.K.RimberiaB.M.WachiraP.M. (2009). Nematode community structure as influenced by land use and intensity of cultivation. Tropical and Subtropical Agroecosystems 11353-360.

LucM.SikoraR.A.BridgeJ. (Eds). (2005). Plant parasitic nematodes in subtropical and tropical agriculture2nd edition. Wallingford, UKCAB International. DOI: 10.1079/9780851997278.0000

MaddisonW.P.MaddisonD.R. (2011). Mesquite: a modular system for evolutionary analysis. Version 2.75. Avaialble online at http://mesquiteproject.org.

Manzanilla-LópezR.H.Marbán-MendozaN. (Eds). (2012). Practical plant nematology. Guadalajara, Jalisco, MexicoColegio de Postgraduados and Mundi-Prensa, Biblioteca Básica de Agricultura.

Martínez-RamosM.Ortiz-RodríguezI.A.PiñeroD.DirzoR.SarukhánJ. (2016). Anthropogenic disturbances jeopardize biodiversity conservation within tropical rainforest reserves. roceedings of the National Academy of Sciences of the United States of America 1135323-5328. DOI: 10.1073/pnas.1602893113

MiljutinD.M.MiljutinaM.A. (2016). Intraspecific variability of morphological characters in the species-rich deep-sea genus Acantholaimus Allgén, 1933 (Nematoda: Chromadoridae). Nematology 18455-473. DOI: 10.1163/15685411-00002970

MorroneJ.J. (2004). La zona de transición sudamericana: caracterización y relevancia evolutiva. Acta Entologica Chilena 2841-50.

MorroneJ.J. (2006). Biogeographic areas and transition zones of Latin America and the Caribbean islands based on panbiogeographic and cladistic analyses of the entomofauna. Annual Review of Entomology 51467-494. DOI: 10.1146/annurev.ento.50.071803.130447

NadlerS.A. (2002). Species delimitation and nematode biodiversity: phylogenies rule. Nematology 4615-625. DOI: 10.1163/15685410260438908

NadlerS.A.HudspethD.S.S. (1998). Ribosomal DNA and phylogeny of the Ascaridoidea (Nemata: Secernentea): Implications for morphological evolution and classification. Molecular Phylogenetics and Evolution 10221-236. DOI: 10.1006/mpev.1998.0514

NadlerS.A.CarrenoR.A.Mejía-MadridH.UllbergJ.PaganC.HoustonR.HugotJ.-P. (2007). Molecular phylogeny of clade III nematodes reveals multiple origins of tissue parasitism. Parasitology 1341421-1442. DOI: 10.1017/S0031182007002880

NeherD.WuJ.BarbercheckM.E.AnasO. (2005). Ecosystem type affects interpretation of soil nematode community measures. Applied Soil Ecology 3047-64. DOI: 10.1016/j.apsoil.2005.01.002

Nieto-SamaniegoA.F.FerrariL.Alaníz-ÁlvarezS.A.Labarthe-HernándezG. (1999). Variation of Cenozoic extension and volcanism across the southern Sierra Madre Occidental volcanic province, Mexico. Geological Society of America Bulletin 111347-363. DOI: 10.1130/0016-7606(1999)111<0347:VOCEAV>2.3.CO;2

OrgiazziA.BardgettR.D.BarriosE.Behan-PelletierV.BrionesM.J.I.ChotteJ.-L.De DeynG.B.EggletonP.FiererN.FraserT. (Eds). (2016). Global soil biodiversity atlas. Luxembourg, LuxembourgEuropean Commission, Publications Office of the European Union.

Palacios-VargasJ.G. (2014). Biodiversidad de Collembola (Hexapoda: Entognatha) en México. Revista Mexicana de Biodiversidad 85(Suppl. 1) S220-S231. DOI: 10.7550/rmb.32713

Palacios-VargasJ.G.FigueroaD. (2014). Biodiversidad de Protura (Hexapoda: Entognatha) en México. Revista Mexicana de Biodiversidad 85(Suppl. 1) S232-S235.

Palacios-VargasJ.G.JuberthieC.ReddellJ.R. (2014-2015). Mexico. Encyclopaedia biospeologica 11a Mundos Subterráneos 25-26 pp. 1-101.

Pen-MouratovS.Rodriguez-ZaragozaS.SteinbergerY. (2008). The effect of Cercidium praecox and Prosopis laevigata on vertical distribution of soil free-living nematode communities in the Tehuacán Desert, Mexico. Ecological Research 23973-982. DOI: 10.1007/s11284-008-0464-6

PérezT.M.Guzmán-CornejoC.Montiel-ParraG.Paredes-LeónR.RivasG. (2014). Biodiversidad de ácaros en Mexico. Revista Mexicana de Biodiversidad 85(Suppl. 1) S399-S407. DOI: 10.7550/rmb.36160

PorazinskaD.L.Giblin-DavisR.M.EsquivelA.PowersT.O.SungW.ThomasW.K. (2010). Ecometagenetics confirms high tropical rainforest nematode diversity. Molecular Ecology 195521-5530. DOI: 10.1111/j.1365-294X.2010.04891.x

PorazinskaD.L.Giblin-DavisR.M.PowersT.O.ThomasW.K. (2012). Nematode spatial and ecological patterns from tropical and temperate rainforests. PLoS One 7e44641. DOI: 10.1371/journal.pone.0044641

PowersT.O.NeherD.A.MullinP.EsquivelA.Giblin-DavisR.M.KanzakiN.StockS.P.MoraM.M.Uribe-LorioL. (2009). Tropical nematode diversity: vertical stratification of nematode communities in a Costa Rican humid lowland rainforest. Molecular Ecology 18985-996. DOI: 10.1111/j.1365-294X.2008.04075.x

PowersT.O.HarrisT.HigginsR.MullinP.SuttonL.PowersK. (2011). MOTU, morphology, and biodiversity estimation: a case study using nematodes of the suborder Criconematina and a conserved 18S DNA Barcode. Journal of Nematology 4335-48.

RzedowskiJ. (2006). Vegetación de México. MexicoCONABIO (Comisión para el Conocimiento y Uso de la Biodiversidad).

RzedowskiJ.CalderónG. (2013). Datos para la apreciación de la Flora Fanerogámica del bosque tropical caducifolio de Mexico. Acta Botanica Mexicana 1021-23.

Sánchez-MorenoS.TalaveraM. (2013). Los nematodos como indicadores ambientales en agroecosistemas. Ecosistemas 2250-55. DOI: 10.7818/ECOS.2013.22-1.09

SchenkJ.HohbergK.HelderJ.RistauK.TraunspurgerW. (2017). The D3-D5 region of large subunit ribosomal DNA provides good resolution of German limnic and terrestrial nematode communities. Nematology 9821-837. DOI: 10.1163/15685411-00003089

SeinhorstJ.W. (1959). A rapid method for the transfer of nematodes from fixative to anhydrous glycerine. Nematologica 467-69. DOI: 10.1163/187529259X00381

SilvestroD.MichalakI. (2012). raxmlGUI: a graphical front-end for RAxML. Organisms Diversity & Evolution 12335-337. DOI: 10.1007/s13127-011-0056-0

StamatakisA. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 222688-2690. DOI: 10.1093/bioinformatics/btl446

StockS.P.CampbellJ.F.NadlerS.A. (2001). Phylogeny of Steinernema Travassos, 1927 (Cephalobina: Steinernematidae) inferred from ribosomal DNA sequences and morphological characters. Journal of Parasitology 87877-889. DOI: 10.1645/0022-3395(2001)087[0877:POSTCS]2.0.CO;2

Suárez-MotaM.E.VillaseñorJ.L.López-MataL. (2015). La región del Bajío, México y la conservación de su diversidad florística. Revista Mexicana de Biodiversidad 86799-808. DOI: 10.1016/j.rmb.2015.06.001

ThakurM.P.TilmanD.PurschkeO.CiobanuM.CowlesJ.IsbellF.WraggP.D.EisenhauerN. (2017). Climate warming promotes species diversity, but with greater taxonomic redundancy, in complex environments. Science Advances 3e1700866. DOI: 10.1126/sciadv.1700866

ThomasW.K.VidaJ.T.FrisseL.M.MundoM.BaldwinJ.G. (1997). DNA sequences from formalin-fixed nematodes: integrating molecular and morphological approaches to taxonomy. Journal of Nematology 29250-254.

WaggC.BenderS.F.WidmerF.van der HeijdenM.G.A. (2014). Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences 1115266-5270. DOI: 10.1073/pnas.1320054111

WilsonM.J.Kakouli-DuarteT. (Eds). (2009). Nematodes as environmental indicators. Wallingford, UKCAB International. DOI: 10.1079%2F9781845933852.0000

WuT.AyresE.LiG.BardgettR.D.WallD.H.GareyJ.R. (2009). Molecular profiling of soil animal diversity in natural ecosystems: incongruence of molecular and morphological results. Soil Biology & Biochemistry 41849-857. DOI: 10.1016/j.soilbio.2009.02.003

YeatesG.W.BongersT.de GoedeR.G.M.FreckmanD.W.GeorgievaS.S. (1993). Feeding habits in soil nematode families and genera; an outline for soil ecologists. Journal of Nematology 25315-331. DOI: 10.1016/j.soilbio.2009.02.003

YeatesG.W.FerrisH.MoensT.Van der PuttenW.H. (2009). The role of nematodes in ecosystems. In: WilsonM.J.Kakouli-DuarteT. (Eds). Nematodes as environmental indicators. Wallingford, UKCAB International pp.  1-44.

ZulliniA. (1973). Some soil and freshwater nematodes from Chiapas (Mexico). In: Subterranean fauna of Mexico part II. Quaderni Accademia Nazionale dei Lincei 171 pp.  55-96.

ZulliniA. (1977a). Some freshwater nematodes of southern Mexico and Guatemala. In: Subterranean fauna of Mexico part III. Quaderni Accademia Nazionale dei Lincei 171 pp.  75-85.

ZulliniA. (1977b). On certain moss nematodes of Central Mexico. In: Subterranean fauna of Mexico part III. Quaderni Accademia Nazionale dei Lincei 171 pp.  87-90.

Figures

  • View in gallery

    Map of Mexico showing sampling sites. Inset in country map depicts enlarged area. Scale is in km. Numbers represent sampled areas: 1 = El Clarín (CL), 2 = La Soledad (SOL), 3 = Izucar de Matamoros (IZU), 4 = Tepexco (TEP), 5 = Zapotitlan de Las Salinas (TEH), 6 = Atlixco (ATL), 7 = Pedro Escobedo (QRO_agric), 8 = Zacapu (ZAC), 9 = Punhuato grassland (PUN_m), 10 = Punhuato pine-oak (PUN_p_e), 11 = San Joaquín (SJOA). Order of numbers indicates increasing altitudes of sites, 1 = lowest, 11 = highest altitude. Source of map: INEGI. Marco Geoestadístico Municipal 2010, version 5.0 (www.cuentame.inegi.org.mx).

  • View in gallery

    ML tree for 77 MOTU from soil nematodes of Central Mexico. Chordodes morgani was used as outgroup. Sampling site codes and vegetation abbreviations as in Table 1. Node and branch distance values that represent ⩾3% ID sequences from GenBank are shown.

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 23 23 17
Full Text Views 8 8 8
PDF Downloads 4 4 4
EPUB Downloads 0 0 0