Differential feeding site development and reproductive fitness of Meloidogyne incognita and M. javanica on zucchini, a source of resistance to M. incognita

in Nematology
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

The development of Meloidogyne incognita and M. javanica on zucchini ‘Amalthee’ was compared to characterise critical events in plant parasitism. Meloidogyne incognita was much less successful parasitising zucchini than M. javanica despite similarities in penetration rates and juvenile development. The increased frequency of undersized individuals, immature females and empty galls evidenced a failure in M. incognita development. Meloidogyne incognita induced larger feeding sites that contained more and larger giant cells than did M. javanica. Malformation of the M. incognita giant cells and abnormal growth of the surrounding tissues was observed at both 11 and 25 days post-inoculation. Critical events in parasitism differentiating the nematode isolates were the transition from fourth-stage juveniles to females, and the reduced fertility of the egg-laying females. Zucchini can be considered a source of resistance to M. incognita because it restricted nematode proliferation by supporting less fertile egg-laying females and producing fewer egg masses and total eggs.

Differential feeding site development and reproductive fitness of Meloidogyne incognita and M. javanica on zucchini, a source of resistance to M. incognita

in Nematology

Sections

References

AbadP.Castagnone-SerenoP.RossoM.N.de Almeida EnglerJ.FaveryB. (2009). Invasion, feeding and development. In: PerryR.N.MoensM.StarrJ.L. (Eds). Root-knot nematodes. Wallingford, UKCAB International pp.  163-181.

AnwarS.A.McKenryM.V. (2010). Incidence and reproduction of Meloidogyne incognita on vegetable crop genotypes. Pakistan Journal of Zoology 42135-141.

ArensM.L.RichJ.R.DicksonD.W. (1981). Comparative studies on root invasion, root galling, and fecundity of three Meloidogyne spp. on a susceptible tobacco cultivar. Journal of Nematology 13201-205.

BaermannG. (1917). Ein einfache Methode zur Auffindung von Anklyostomum (Nematoden) Larven in Erdproben. Geneeskunding Tijdschrift voor Nederland-Indië 57131-137.

BarkerK.R. (1993). Resistance/tolerance and related concepts/terminology in plant nematology. Plant Disease 77111-113.

BartlemD.G.JonesM.G.K.HammesU.Z. (2014). Vascularization and nutrient delivery at root-knot nematode feeding sites in host roots. Journal of Experimental Botany 651789-1798. DOI: 10.1093/jxb/ert415

BridgeJ.PageS.L.J. (1982). The rice root-knot nematode, Meloidogyne graminicola, on deep water rice (Oryza sativa subsp. indica). Revue de Nématologie 5225-232.

CabasanM.T.N.KumarA.BellafioreS.De WaeleD. (2014). Histopathology of the rice root-knot nematode, Meloidogyne graminicola, on Oryza sativa and O. glaberrima. Nematology 1673-81. DOI: 10.1163/15685411-00002746

CabreraJ.Díaz-ManzanoF.E.FenollC.EscobarC. (2015). Developmental pathways mediated by hormones in nematode feeding sites. Advances in Botanical Research 73167-188. DOI: 10.1016/bs.abr.2014.12.005

Castagnone-SerenoP.BongiovanniM.WajnbergE. (2007). Selection and parasite evolution: a reproductive fitness cost associated with virulence in the parthenogenetic nematode Meloidogyne incognita. Evolutionary Ecology 21259-270. DOI: 10.1007/s10682-006-9003-5

CurtisR.H.RobinsonA.F.PerryR.N. (2009). Hatch and host location. In: PerryR.N.MoensM.StarrJ. (Eds). Root-knot nematodes. Wallingford, UKCAB International pp.  139-162.

DasS.DeMasonD.A.EhlersJ.D.CloT.J.RobertsP.A. (2008). Histological characterization of root-knot nematode resistance in cowpea and its relation to reactive oxygen species modulation. Journal of Experimental Botany 591305-1313. DOI: 10.1093/jxb/ern036

DavideR.G. (1980). Influence of different crops on the dimensions of Meloidogyne arenaria isolated from fig. Proceedings of the Helminthological Society of Washington 4780-84.

DaviesL.J.EllingA.A. (2015). Resistance genes against plant-parasitic nematodes: a durable control strategy? Nematology 17249-263. DOI: 10.1163/15685411-00002877

De MeutterJ.TytgatT.WittersE.GheysenG.Van OnckelenH.GheysenG. (2003). Identification of cytokinins produced by the plant parasitic nematodes Heterodera schachtii and Meloidogyne incognita. Molecular Plant Pathology 4271-277. DOI: 10.1046/j.1364-3703.2003.00176.x

DesaegerJ.A.CsinosA.S. (2006). Root-knot nematode management in double-cropped plasticulture vegetables. Journal of Nematology 3859-67.

Djian-CaporalinoC.MolinariS.PalloixA.CiancioA.FazariA.MarteuN.RisN.Castagnone-SerenoP. (2011). The reproductive potential of the root-knot nematode Meloidogyne incognita is affected by selection for virulence against major resistance genes from tomato and pepper. European Journal of Plant Pathology 131431-440. DOI: 10.1007/s10658-011-9820-4

DuttaT.K.PowersS.P.KerryB.R.GaurH.S.CurtisR.H.C. (2011). Comparison of host recognition, invasion, development and reproduction of Meloidogyne graminicola and M. incognita on rice and tomato. Nematology 13509-520. DOI: 10.1163/138855410X528262

EscobarC.BarcalaM.CabreraJ.FenollC. (2015). Overview of root-knot nematodes and giant cells. Advances in Botanical Research 731-32. DOI: 10.1016/bs.abr.2015.01.001

FaskeT.R. (2013). Penetration, post-penetration development, and reproduction of Meloidogyne incognita on Cucumis melo var. texanus. Journal of Nematology 4558-65.

FassuliotisG. (1970). Resistance of Cucumis spp. to the root-knot nematode, Meloidogyne incognita acrita. Journal of Nematology 2174-178.

Fernández-AparicioM.SilleroJ.C.Pérez de LuqueA.RubialesD. (2008). Identification of sources of resistance to crenate broomrape (Orobanche crenata) in Spanish lentil (Lens culinaris) germplasm. Weed Research 4885-94. DOI: 10.1111/j.1365-3180.2008.00604.x

GoverseA.SmantG. (2014). The activation and suppression of plant innate immunity by parasitic nematodes. Annual Review of Phytopathology 52243-265. DOI: 10.1146/annurev-phyto-102313-050118

HollidayP. (2001). A dictionary of plant pathology2nd edition. Cambridge, UKCambridge University Press.

HusseyR.S.BarkerK.R. (1973). A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Disease Reporter 571025-1028.

JammesF.LecomteP.Almeida-EnglerJ.BittonF.Martin-MagnietteM.L.RenouJ.P.AbadP.FaveryB. (2005). Genome-wide expression profiling of the host response to root-knot nematode infection in Arabidopsis. The Plant Journal 44447-458. DOI: 10.1111/j.1365-313X.2005.02532.x

KhanA.A.KhanM.V. (1991). Penetration and development of Meloidogyne incognita race 1 and Meloidogyne javanica in susceptible and resistant vegetables. Nematropica 2171-77.

KyndtT.GoverseA.HaegemanA.WarmerdamS.WanjauC.JahaniM.EnglerG.de Almeida EnglerJ.GheysenG. (2016). Redirection of auxin flow in Arabidopsis thaliana roots after infection by root-knot nematodes. Journal of Experimental Botany 674559-4570. DOI: 10.1093/jxb/erw230

López de MendozaM.ModhaJ.RobertsC.CurtisR.H.C.KuselJ. (2000). Observations of the changes of the surface cuticle of parasitic nematode using fluorescent probes. Parasitology 120203-209. DOI: 10.1017/S0022149X13000618

López-GómezM.Verdejo-LucasS. (2014). Penetration and reproduction of root-knot nematodes on cucurbit species. European Journal of Plant Pathology 138863-871. DOI: 10.1007/s10658-013-0359-4

López-GómezM.Flor-PeregrínE.TalaveraM.Verdejo-LucasS. (2015). Suitability of zucchini and cucumber genotypes to populations of Meloidogyne arenaria, M. incognita and M. javanica. Journal of Nematology 4779-85.

McClureM.A.ViglierchioD.R. (1966). The influence of host nutrition and intensity of infection on the sex ratio and development of Meloidogyne incognita in sterile agar cultures of excised cucumber roots. Nematologica 12248-258. DOI: 10.1163/187529266X00662

McSorleyR.DicksonD.W.De BritoJ.A.HewlettT.E.FrederickJ.J. (1994). Effect of tropical rotation crops on Meloidogyne arenaria population densities and vegetable yield in microplots. Journal of Nematology 26175-181.

MorM.OkaY. (2006). Histological study of giant cells formed by the root-knot nematode Meloidogyne artiellia as compared with M. hapla and M. javanica in cabbage, turnip and barley. Phytoparasitica 34502-509. DOI: 10.1007/BF02981206

MukhtarT.KayaniM.Z.HussainM.A. (2013). Response of selected cucumber cultivars to Meloidogyne incognita. Crop Protection 4413-17. DOI: 10.1016/j.cropro.2012.10.015

O’BrienT.P.FederN.McCullyM.E. (1964). Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59368-373. DOI: 10.1007/BF01248568

OmwegaC.ThomasonI.J.RobertsP.A. (1988). A non-destructive technique for screening bean germplasm for resistance to Meloidogyne incognita. Plant Disease 72970-972.

PedrosaE.M.R.HusseyR.S.BoermaH.R. (1996). Cellular responses of resistant and susceptible soybean genotypes infected with Meloidogyne arenaria races 1 and 2. Journal of Nematology 28225-232.

PegardA.BrizzardG.FazariA.SoucazeO.AbadP.Djian-CaporalinoC. (2005). Histological characterization of resistance to different root-knot nematode species related to phenolics accumulation in Capsicum annuum. Phytopathology 95158-165. DOI: 10.1094/PHYTO-95-0158

ProiteK.CarneiroR.FalcãoR.GomesA.Leal-BertioliS.GuimarãesP.BertioliD. (2008). Post-infection development and histopathology of Meloidogyne arenaria race 1 on Arachis spp. Plant Pathology 57974-980. DOI: 10.1111/j.1365-3059.2008.01861.x

RuzinS.E. (1999). Plant microtechnique and microscopy. New York, NY, USAOxford University Press.

ShanerG.StrombergE.L.LacyG.H.BarkerK.R.PironeT.P. (1992). Nomenclature and concepts of pathogenicity and virulence. Annual Review of Phytopathology 3047-66. DOI: 10.1146/annurev.py.30.090192.000403

SiddiqueS.RadakovicZ.S.De La TorreC.M.ChronisD.NovakO.RamireddyE.HolbeinJ.MateraC.HüttenM.GutbrodP. (2015). A parasitic nematode releases cytokinin that controls cell division and orchestrates feeding site formation in host. Proceedings of the National Academy of Sciences of the United States of America 11212669-12674. DOI: 10.1073/pnas.1503657112

SinghV.SinghS.P.YadaveR.SaxenaS.K. (1985). Effect of different plants on the morphometrics of females of root-knot nematode, Meloidogyne incognita. Nematologia Mediterranea 1381-85.

StephanZ.A.TrudgillD.L. (1982). Development of four populations of Meloidogyne hapla on two cultivars of cucumber at different temperatures. Journal of Nematology 14545-549.

TalaveraM.SayadiS.Chirosa-RíosM.SalmerónT.Flor-PeregrínE.Verdejo-LucasS. (2012). Perception of the impact of root-knot nematode induced diseases in horticultural protected crops of south-eastern Spain. Nematology 14517-527. DOI: 10.1163/156854112X635850

TaylorA.L.SasserJ.N. (1978). Biology identification and control of root-knot nematodes. Raleigh, NC, USANorth Caroline State University.

VawdreyL.L.StirlingG.R. (1996). The use of tolerance and modification of planting times to reduce damage caused by root-knot nematodes (Meloidogyne spp.) in vegetable cropping systems at Bundaberg, Queensland. Australasian Plant Pathology 25240-246.

VelaM.D.GinéA.López-GómezM.SorribasF.J.OrnatC.Verdejo-LucasS. (2014). Thermal requirements of root-knot nematodes on zucchini-squash and population dynamics with associated yield losses on spring and autumn cropping cycles. European Journal of Plant Pathology 140481-490.

Verdejo-LucasS.OrnatC.SorribasF.J.StchiegelA. (2002). Species of root-knot nematodes and fungal egg parasites recovered from vegetables in Almería and Barcelona. Journal of Nematology 34405-408.

VovlasN.RapoportH.F.Jiménez DíazR.M.CastilloP. (2005). Differences in feeding sites induced by root-knot nematodes, Meloidogyne spp., in chickpea. Phytopathology 95368-375. DOI: 10.1094/PHYTO-95-0368

WaltersS.A.WehnerT.C.DaykinM.E.BarkerK.R. (2006). Penetration rates of root-knot nematodes into Cucumis sativus and C. metuliferus roots and subsequent histological changes. Nematropica 36231-242.

WilliamsonV.M.KumarA. (2006). Nematode resistance in plants: the battle underground. Trends in Genetics 22396-403. DOI: 10.1016/j.tig.2006.05.003

Figures

  • View in gallery

    Number of juvenile stages (A) and galls (B) of Meloidogyne incognita and M. javanica in the roots of zucchini ‘Amalthee’ at 3, 7, 11 and 15 days post-inoculation of 400 juveniles per plant. Values are the mean of eight replicated plants (two experiments × four plants per days post-inoculation). Bars indicate the standard error of the mean.

  • View in gallery

    Percentage of third- (J3) plus fourth- (J4) stage juveniles, immature females, egg-laying females and empty galls of Meloidogyne incognita (A) and M. javanica (B) on zucchini ‘Amalthee’ at 18, 21 and 25 days post-inoculation of 400 second-stage juveniles per plant. Nematodes assessed in a random sample of 100 galls per nematode isolates-days post-inoculation combination.

  • View in gallery

    A: Gall surface area (μm2); and B: Maximum nematode width (μm) of Meloidogyne incognita and M. javanica on zucchini ‘Amalthee’ at six time points after inoculation of 400 second-stage juveniles per plant. Values are the mean of 30 galls induced by the respective nematode and the corresponding nematodes inside the galls. Bars indicate the standard error of the mean.

  • View in gallery

    Longitudinal sections of galls from zucchini ‘Amalthee’ stained with Toluidine Blue O at 11 days post-inoculation. A: Meloidogyne javanica gall on zucchini root; B: M. incognita gall on zucchini root; C: Detail of the feeding site induced by M. javanica inside the central cylinder; D: Detail of the feeding site induced by M. incognita with uncontrolled growth and division of vascular parenchyma cells (arrowheads) and accumulation of substances in the apoplast (arrows) staining dark blue. Some giant cells show a high number of vacuoles (+) and others present a large vacuole occupying the cytoplasm (). Nm, nematode; gc, giant cell; Xy, xylem vessels. (Scale bars: A, B = 250 μm; C, D = 50 μm.)

  • View in gallery

    Longitudinal sections of galls from zucchini ‘Amalthee’ stained with Toluidine Blue O at 25 days post-inoculation. A: Meloidogyne javanica gall on zucchini root; B: M. incognita gall on zucchini root; C: Detail of the feeding site induced by M. javanica inside the central cylinder; D: Detail of the feeding site induced by M. incognita with uncontrolled growth and division of vascular parenchyma cells (arrowheads) and accumulation of substances in the apoplast (arrows) staining bluish-turquoise. Some giant cells show a high number of vacuoles (+) and others present a great vacuole occupying the cytoplasm (). Nm, nematode; gc, giant cell; Xy, xylem vessels. (Scale bars: A, B = 250 μm; C, D = 50 μm.)

  • View in gallery

    Longitudinal sections of galls on zucchini ‘Amalthee’, showing an accumulation of substances in the apoplast of the feeding sites. A: Toluidine Blue O stained section of the Meloidogyne javanica interaction with normal development at 25 dpi and no accumulation of apoplastic substances; B: Unstained consecutive section of (A) observed under epifluorescence (330-380 nm); C: Toluidine Blue O stained section of the M. incognita interaction at 11 dpi showing accumulation of dark-blue-stained substances (arrows); D: Unstained consecutive section of (C) observed under UV excitation (330-380 nm) and showing fluorescence of the apoplastic substances (arrows); E: as in (C) but at 25 dpi and showing bluish-turquoise substances (arrows); F: Unstained consecutive section of (E) observed under UV excitation (330-380 nm) and showing fluorescence of the apoplastic substances (arrows). Nm, nematode; gc, giant cell; Xy, xylem vessels. (Scale bars = 50 μm.)

  • View in gallery

    Microphotographs to illustrate the detachment of the Meloidogyne incognita fourth-stage juveniles from the feeding site induced in zucchini ‘Amalthee’ at 15 days post-inoculation.

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 7 7 4
Full Text Views 11 11 11
PDF Downloads 0 0 0
EPUB Downloads 0 0 0