Reproductive, pathogenic and genotypic characterisation of five Meloidogyne graminicola populations from the Philippines on susceptible and resistant rice varieties

in Nematology
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Summary

Five populations of Meloidogyne graminicola isolated from different rice-growing areas in the Philippines were characterised. The populations showed little phenotypic variability of second-stage juveniles and female perineal pattern. Differences in reproduction among M. graminicola populations were not observed on mature resistant Oryza glaberrima varieties ‘TOG5674’, ‘TOG5675’, ‘RAM131’ and ‘CG14’, or on susceptible O. sativa varieties ‘IR64’ and ‘UPLRi-5’. In all infected rice varieties, plant growth and yield-contributing traits showed no differences among the populations. A search on M. graminicola populations from the Philippines for single-nucleotide polymorphism on the sequences of Internal Transcribed Spacer (ITS) of rDNA genes and mtDNA indicated only few points of heteroplasmy. Nematode reproduction and disease induction of the five M. graminicola populations in the Philippines exerted the same level of aggressiveness and virulence. The absence of resistance-breaking populations of M. graminicola is important for the maintenance of durability of resistance to this important rice pathogen.

Reproductive, pathogenic and genotypic characterisation of five Meloidogyne graminicola populations from the Philippines on susceptible and resistant rice varieties

in Nematology

Sections

References

AnwarS.A. & McKenryM.V. (2007). Variability in reproduction of four populations of Meloidogyne incognita on six cultivars of cotton. Journal of Nematology 39105-110.

BellafioreS.JouglaC.ChapuisE.BesnardG.SoungM.VuP.N.De WaeleD.GantetP. & ThiX.G. (2015). Intraspecific variability of the facultative meiotic parthenogenetic root-knot nematode (Meloidogyne graminicola) from rice fields in Vietnam. Comptes Rendus Biologies 338471-483. DOI: 10.1016/j.crvi.2015.04.002

BerthouF.BadialloA.DemaeyerL.DeguiranG.BruguierN. & DiengM. (1989). Characterization of virulent (Mi-gene resistance breaking) biotypes of root-knot nematodes Meloidogyne Goeldi (Tylenchida) in two vegetable growing areas of Senegal. Agronomie 9877-884.

BesnardG.JühlingF.ChapuisÉ.ZedaneL.LhuillierÉ.MateilleT. & BellafioreS. (2014). Fast assembly of the mitochondrial genome of a plant parasitic nematode (Meloidogyne graminicola) using next generation sequencing. Comptes Rendus Biologies 337295-301. DOI: 10.1016/j.crvi.2014.03.003

BosL. & ParlevlietJ.E. (1995). Concepts and terminology on plant/pest relationships: toward consensus in plant pathology and crop protection. Annual Review of Phytopathology 3369-102. DOI: 10.1146/annurev.py.33.090195.000441

CabasanM.T.N.KumarA. & De WaeleD. (2012). Comparison of migration, penetration, development and reproduction of Meloidogyne graminicola on susceptible and resistant rice genotypes. Nematology 14405-415. DOI: 10.1163/156854111X602613

CabasanM.T.N.KumarA.BellafioreS. & De WaeleD. (2014). Histopathology of the rice root-knot nematode Meloidogyne graminicola on Oryza sativa and O. glaberrima. Nematology 1673-81. DOI: 10.1163/15685411-00002746

CarpenterA.S. & LewisS. (1991). Aggressiveness and reproduction of four Meloidogyne arenaria populations on soybean. Journal of Nematology 23232-238.

Castagnone-SerenoP.BongiovanniM. & DalmassoA. (1993). Stable virulence against the tomato resistance Mi gene in the parthenogenetic root-knot nematode Meloidogyne incognita. Phytopathology 83803-805. DOI: 10.1094/Phyto-83-803

ChangT.T. & LorestoG.C. (1986). Germplasm resource and breeding for drought resistance. In: Progress in upland rice research. Proceedings of the 1985 Jakarta conference. Manila, PhilippinesInternational Rice Research Institute pp. 199-202.

De WaeleD.DasK.ZhaoD.TiwariR.K.S.ShrivastavaD.K.Vera-CruzC. & KumarA. (2013). Host response of rice genotypes to the rice root-knot nematode (Meloidogyne graminicola) under aerobic soil conditions. Archives of Phytopathology and Plant Protection 46670-681. DOI: 10.1080/03235408.2012.749702

DereeperA.GuignonV.BlancG.AudicS.BuffetS.ChevenetF.DufayardJ.F.GuindonS.LefortV.LescotM. et al. (2008). Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Research 36465-469. DOI: 10.1093/nar/gkn180

DropkinV.H. (1988). The concept of race in phytonematology. Annual Review of Phytopathology 26145-161. DOI: 10.1146/annurev.py.26.090188.001045

EddaoudiM.AmmatiM. & RammahA. (1997). Identification of resistance breaking populations of Meloidogyne on tomatoes in Morocco and their effect on new sources of resistance. Fundamental and Applied Nematology 20285-289.

FutakuchiK. & SiéM. (2009). Better exploitation of African rice (Oryza glaberrima Steud.) in varietal development for resource-poor farmers in west and central Africa. Agricultural Journal 496-102.

FutakuchiK.JonesM.P. & IshiR. (2001). Physiological and morphological mechanism of submergence resistance in African rice (Oryza glaberrima Steud.). Japanese Journal of Tropical Agriculture 458-14. DOI: 10.11248/jsta1957.45.8

GeorgeT.MagbanuaR.GarrityD.P.TubañaB.S. & QuitonJ. (2002). Rapid yield loss of rice cropped successively in aerobic soil. Agronomy Journal 94981-989. DOI: 10.2134/agronj2002.0981

GoldenA.M. & BirchfieldW. (1965). Meloidogyne graminicola (Heteroderidae), a new species of root-knot nematode from grass. Proceedings of the Helminthological Society of Washington 32228-231.

Gutiérrez-GutiérrezC.CastilloP.Cantalapiedra-NavarreteC.LandaB.B.DeryckeS. & Palomares-RiusJ.E. (2011). Genetic structure of Xiphinema pachtaicum and X. index populations based on mitochondrial DNA variation. Phytopathology 1011168-1175. DOI: 10.1094/PHYTO-07-10-0194

HartmanK.M. & SasserJ.N. (1985). Identification of Meloidogyne species on the basis of differential host test and perineal pattern morphology. In: BarkerK.R.CarterC.C. & SasserJ.N. (Eds). An advanced treatise on Meloidogyne. Vol. II methodology. Raleigh, NC, USANorth Carolina State University Graphics pp. 69-77.

Humphreys-PereiraD.A. & EllingA.A. (2013). Intraspecific variability and genetic structure in Meloidogyne chitwoodi from the USA. Nematology 15315-327. DOI: 10.1163/15685411-00002684

HusseyH. & JanssenG.J.W. (2002). Root-knot nematode: Meloidogyne species. In: StarrJ.L.CookR. & BridgeJ. (Eds). Plant resistance to parasitic nematodes. Wallingford, UKCAB International pp. 43-70.

Jarguin-BarberenaH.DalmassoA.D.E.GuiranG. & CardinM.C. (1991). Acquired virulence in the plant parasitic nematode, Meloidogyne incognita. Biological analysis of the phenomenon. Revue de Nématologie 14299-303.

JenaR.N. & RaoY.S. (1977a). Nature of resistance in rice (Oryza sativa L.) to the root knot nematode (Meloidogyne graminicola) I. Mechanism of resistance. Proceedings of the Indian Academy of Science 8631-38.

JenaR.N. & RaoY.S. (1977b). Nature of resistance in rice (Oryza sativa L.) to the root knot nematode (Meloidogyne graminicola) II. Histopathology of nematode infection in rice varieties. Proceedings of the Indian Academy of Science 8687-91.

JonesM.P.DingkuhnM.AlukoG.K. & SemonM. (1997). Interspecific Oryza sativa L. × O. glaberrima Steud. progenies in upland rice improvement. Euphytica 92237-246. DOI: 10.1023/A:1002969932224

KaloshianI.WilliamsonV.M.MiyaoG.LawnD.A. & WesterdahlB.B. (1996). “Resistance breaking” nematodes identified in California tomatoes. California Agriculture 5018-19. DOI: 10.3733/ca.v050n06p18

KreyeC.BoumanB.A.M.ReversatG.FernandezL.Vera CruzC.ElazeguiF.FaroniloJ.E. & LlorcaL. (2009). Biotic and abiotic causes of yield failure in tropical aerobic rice. Field Crops Research 11297-106. DOI: 10.1016/j.fcr.2009.02.005

MahadevappaM.RudraradhyaM.ShivappaT.G. & PanchaksharaiahS. (1991). Performance of IR64 in Kamataka, India. International Rice Research Newsletter 417.

MulkM.M. (1976). Meloidogyne graminicola. CIH Descriptions of plant-parasitic nematodes Set 6 No. 87. Farnham Royal UK Commonwealth Agricultural Bureaux.

NetscherC. (1976). Observations and preliminary studies on the occurrence of resistance breaking biotypes of Meloidogyne spp. on tomato. Cahiers ORSTOM Série Biologie 11173-178.

NoeJ.P. (1992). Variability among populations of Meloidogyne arenaria. Journal of Nematology 24404-414.

OloweT. (2010). Variation in virulence of Meloidogyne incognita race 1, 2, 3, and 4 on cowpea genotypes. European Journal of Scientific Research 43340-350.

PadghamJ.L.DuxburyJ.M.MazidA.M.AbawiG.S. & HossainM. (2004). Yield loss caused by Meloidogyne graminicola on lowland rainfed rice in Bangladesh. Journal of Nematology 3642-48.

PatilJ. & GaurH.S. (2014). The effect of root-knot nematode, Meloidogyne graminicola, on the quality and vigour of rice seed. Nematology1-10. DOI: 10.1163/15685411-00002787

PlowrightR.A.CoyneD.L.NashP. & JonesM.P. (1999). Resistance to the rice nematodes Heterodera sacchari, Meloidogyne graminicola and M. incognita in Oryza glaberrima and O. glaberrima × O. sativa interspecific hybrids. Nematology 1745-751. DOI: 10.1163/156854199508775

PokharelR.R.AbawiG.S.ZhangN.DuxburyJ.M. & SmartC.D. (2007). Characterization of isolates of Meloidogyne from rice-wheat production fields in Nepal. Journal of Nematology 39221-230.

PokharelR.R.AbawiG.S.DuxburyJ.M.SmartC.D.WangX. & BritoJ.A. (2010). Variability and the recognition of two races in Meloidogyne. Australasian Plant Pathology 39326-333. DOI: 10.1071/AP09100

ProtJ.-C. (1984). A naturally occurring resistance breaking biotype of Meloidogyne arenaria on tomato. Reproduction and pathogenicity on tomato cultivars Roma and Rossol. Revue de Nématologie 723-28.

ReversatG. & FernandezL. (2004). Effect of inoculations with single and multiple juveniles on release of progeny of Meloidogyne graminicola from susceptible rice. Nematology 61-6. DOI: 10.1163/156854104323072856

ReversatG.BoyerJ.SannierC. & Pando-BahuonA. (1999). Use of a mixture of sand and water-absorbent synthetic polymer as substrate for the xenic culturing of plant-parasitic nematodes in the laboratory. Nematology 1209-212. DOI: 10.1163/156854199508027

RobertsP. & ThomasonJ. (1986). Variability in reproduction of isolates of M. incognita and M. javanica on resistant tomato genotypes. Plant Disease 70547-551. DOI: 10.1094/PD-70-547

RobertsP.A.DalmassoA.CapG.B. & Castagnone-SerenoP. (1990). Resistance in Lycopersicon peruvianum to isolates of Mi gene compatible Meloidogyne populations. Journal of Nematology 22585-589.

SarlaN. & SwamyB.P.M. (2005). Oryza glaberrima: a source for the improvement of Oryza sativa. Current Science 89955-963.

SeinhorstJ.W. (1950). De betekenis van de toestand van de grond voor het optreden van aantasting door het stengelaaltje (Ditylenchus dipsaci (Kühn) Filipjev). Tijdschrift over Plantenziekten 56288-348.

SemblatJ.P.BongiovanniM.WajnbergE.DalmassoA.AbadP. & Castagnone-SerenoP. (2000). Virulence and molecular diversity of parthenogenetic root-knot nematodes, Meloidogyne spp. Heredity 8481-89. DOI: 10.1046/j.1365-2540.2000.00633.x

SorianoI.R.SchmitV.BrarD.S.ProtJ. & ReversatG. (1999). Resistance to rice root-knot nematode Meloidogyne graminicola identified in Oryza longistaminata and O. glaberrima. Nematology 1395-398. DOI: 10.1163/156854199508397

SorianoI.R.ProtJ. & MatiasD.M. (2000). Expression of tolerance for Meloidogyne graminicola in rice cultivars as affected by soil type and flooding. Journal of Nematology 32309-317.

TamuraK.StecherG.PetersonD.FilipskiA. & KumarS. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 32725-2729. DOI: 10.1093/molbev/mst197

TriantaphyllouA.C. (1985). Cytogenetics, cytotaxonomy and phylogeny of root-knot nematodes. In: SasserJ.N. & CarterC.C. (Eds). An advance treatise on Meloidogyne. Vol. I biology and control. Raleigh, NC, USANorth Carolina State University Press pp. 113-126.

van der BeekJ.G.MaasP.W.T.H.JanseenG.J.ZijistraC. & Van SilfhoutC.H. (1999). A pathotype to describe intra-specific variation in pathogenicity of Meloidogyne chitwoodi. Journal of Nematology 31386-392.

WadeL.J.McLarenC.G.QuintanaL.HarnpichitvitayaD.RajatasereekulS.SarawgiA.K.KumarA.AhmedH.U.Singh SarwotoA.K.RodriguezR. et al. (1999). Genotype by environment interactions across diverse rainfed lowland rice environments. Field Crops Research 6435-50.

WinP.P.KyiP.P.MaungZ.T.Z. & De WaeleD. (2013). Evaluation of the host response of lowland and upland rice varieties from Myanmar to the rice root-knot nematode Meloidogyne graminicola. Archives of Phytopathology and Plant Protection 47869-891. DOI: 10.1080/03235408.2013.824640

WuJ.-L.WuC.LeiC.BaraoidanM.BordeosA.MadambaM.R.S.Ramos-PamplonaM.MauleonR.PortugalA.UlatV.J. et al. (2005). Chemical- and irradiation-induced mutants of indica rice IR64 for forward and reverse genetics. Plant Molecular Biology 5985-97.

YikC.P. & BirchfieldW. (1979). Host studies and reactions of cultivars to Meloidogyne graminicola. Phytopathology 69497-499.

ZhouE.WheelerT.A. & StarrJ.L. (2000). Root galling and reproduction of Meloidogyne incognita isolates from Texas on resistant cotton genotypes. Journal of Nematology (Supplement) 32513-518.

Figures

  • View in gallery

    Agro-ecology of the sampled areas.

  • View in gallery

    Collection sites in the Philippines of the Meloidogyne graminicola populations studied.

  • View in gallery

    List of mitochondrial DNA amplification and sequencing primers used in this study.

  • View in gallery

    Perineal patterns of mature females of Meloidogyne graminicola populations from the Philippines. A: Batangas; B: Bulacan; C: Cotabato; D: Laguna; E: Tarlac. Striae converging into a tetragonal web (w) near the tail (t) terminus dorsal to the vulva (v). (Scale bar = 20 μm.)

  • View in gallery

    Morphometrics of the second-stage juveniles (J2) of five Meloidogyne graminicola populations collected from different rice-growing areas in the Philippines (n = 18 for each population), and populations from USA and Nepal. Values are in μm and in the form: mean ± standard deviation (range).

  • View in gallery

    Mitochondrial heteroplasmic single-nucleotide polymorphisms.

  • View in gallery

    Reproduction of five populations of Meloidogyne graminicola from the Philippines on resistant (R) and susceptible (S) rice varieties, and severity of root galling at maturity.

  • View in gallery

    Fresh root and shoot weight, and plant height at maturity of resistant (R) and susceptible (S) rice varieties inoculated with five different populations of Meloidogyne graminicola from the Philippines, and percentage reduction when compared with non-inoculated control plants.

  • View in gallery

    Yield component parameters of resistant (R) and susceptible (S) rice varieties inoculated with five different populations of Meloidogyne graminicola from the Philippines, and percentage reduction when compared with non-inoculated control plants.

  • View in gallery

    Yield-contributing traits data of resistant (R) and susceptible (S) rice varieties inoculated with five different populations of Meloidogyne graminicola populations (6000 second-stage juveniles plant−1) from the Philippines, and percentage change when compared with no-inoculated control plants.

  • View in gallery

    Average fresh root weight and average percentage change in plant growth data and yield-contributing traits of resistant (R) and susceptible (S) rice varieties inoculated with five Meloidogyne graminicola populations (6000 second-stage juveniles plant−1) from the Philippines compared with non-inoculated control plants for each rice variety, and for the resistant and susceptible varieties combined.

  • View in gallery

    Effect of the five Meloidogyne graminicola populations from the Philippines on the number of juveniles per root system and the yield reduction of four resistant (R) and two susceptible (S) rice genotypes grown in a sandy loam soil in the glasshouse. Number of nematodes initially inoculated (Pi): 6000 second-stage juveniles (J2) plant−1. Median boxplot with 25-75% (boxes) and minimum-maximum (error bars) values.

Information

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 55 55 33
Full Text Views 65 65 52
PDF Downloads 6 6 2
EPUB Downloads 0 0 0