Nicotiana benthamiana as model plant for Meloidogyne graminicola infection

in Nematology
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Summary

Nicotiana benthamiana is widely used as a model plant to analyse cell biology and to obtain insight into the molecular host-pathogen interaction because it is susceptible to many pathogens. Since N. benthamiana can be transformed easily, it is also used to study pathogens for which it is not a known host. Meloidogyne graminicola has a fairly broad host range of mainly monocots and some dicots but no data were available on the ability of M. graminicola to infect N. benthamiana. In this study, we show that M. graminicola is able to infect and complete its life cycle in N. benthamiana, although our experiments demonstrate a lower susceptibility compared to rice. In addition, M. graminicola was also able to develop in N. tabacum but the reproduction was very low. Therefore, we conclude that N. benthamiana can be considered as a host, while this is not the case for N. tabacum.

Nicotiana benthamiana as model plant for Meloidogyne graminicola infection

in Nematology

Sections

References

AbadP.FaveryB.RossoM.N. & Castagnone-SerenoP. (2003). Root-knot nematode parasitism and host response: molecular basis of a sophisticated interaction. Molecular Plant Pathology 4217-224. DOI: 10.1046/j.1364-3703.2003.00170.x

AndrieuA.BreitlerJ.SiréC.MeynardD.GantetP. & GuiderdoniE. (2012). An in planta, Agrobacterium-mediated transient gene expression method for inducing gene silencing in rice (Oryza sativa L.) leaves. Rice 523. DOI: 10.1186/1939-8433-5-23

BaermannG. (1917). Eine einfache Methode zur Auffindung von Ankylostomum – (Nematoden) – Larven in Erdproben. In: Mededelingen uit het Geneeskundig Laboratorium te Weltevreden41-47.

BellafioreS.JouglaC.ChapuisÉ.BesnardG.SuongM.VuP.N.De WaeleD.GantetP. & ThiX.N. (2015). Intraspecific variability of the facultative meiotic parthenogenetic root-knot nematode (Meloidogyne graminicola) from rice fields in Vietnam. Comptes Rendus – Biologies 338471-483. DOI: 10.1016/j.crvi.2015.04.002

BridgeJ.PlowrightR.A. & PengD. (2005). Nematode parasites of rice. In: LucM.SikoraR.A. & BridgeJ. (Eds). Plant parasitic nematodes in subtropical and tropical agriculture2nd edition. Wallingford, UKCAB International pp. 87-130.

Castagnone-SerenoP. (2002). Genetic variability of nematodes: a threat to the durability of plant resistance genes? Euphytica 124193-199. DOI: 10.1023/A:1015682500495

ChapuisE.BesnardG.AndrianasetraS.RakotomalalaM.NguyenH.T. & BellafioreS. (2016). First report of the root-knot nematode (Meloidogyne graminicola) in Madagascar rice fields. Australasian Plant Disease Notes 1132. DOI: 10.1007/s13314-016-0222-5

ChenJ.LinB.HuangQ.HuL.ZhuoK. & LiaoJ. (2017). A novel Meloidogyne graminicola effector, MgGPP, is secreted into host cells and undergoes glycosylation in concert with proteolysis to suppress plant defenses and promote parasitism. PLoS Pathogens 13. DOI: 10.1371/journal.ppat.1006301

DavarpanahS.J.JungS.H.KimY.J.ParkY.I.MinS.R.LiuJ.R. & JeongW.J. (2009). Stable plastid transformation in Nicotiana benthamiana. Journal of Plant Biology 52244-250. DOI: 10.1007/s12374-009-9023-0

FanelliE.CotroneoA.CarisioL.TroccoliA.GrossoS.BoeroC.CaprigliaF. & De LucaF. (2017). Detection and molecular characterization of the rice root-knot nematode Meloidogyne graminicola in Italy. European Journal of Plant Pathology 149467-476. DOI: 10.1007/s10658-017-1196-7

GoldenA.M. & BirchfieldW. (1965). Meloidogyne graminicola (Heteroderidae) a new species of root-knot nematode from grass. Proceedings of the Helminthological Society of Washington 32228-231.

GoodinM.M.ZaitlinD.NaidooR.A. & LommelS.A. (2008). Nicotiana benthamiana: its history and future as a model for plant-pathogen interactions. Molecular Plant-Microbe Interactions 211015-1026. DOI: 10.1094/MPMI-21-8-1015

HaegemanA.MantelinS.JonesJ.T. & GheysenG. (2012). Functional roles of effectors of plant-parasitic nematodes. Gene 49219-31. DOI: 10.1016/j.gene.2011.10.040

IzawaT. & ShimamotoK. (1996). Becoming a model plant: the importance of rice to plant science. Trends in Plant Science 195-99. DOI: 10.1016/S1360-1385(96)80041-0

JenkinsW.R. (1964). A rapid centrifugal-flotation technique for separating nematodes from soil. Plant Disease Reporter 48692.

KapilaJ.De RyckeR.Van MontaguM. & AngenonG. (1997). An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Science 122101-108. DOI: 10.1016/S0168-9452(96)04541-4

KyndtT.FernandezD. & GheysenG. (2014). Plant-parasitic nematode infections in rice: molecular and cellular insights. Annual Review of Phytopathology 52135-153. DOI: 10.1146/annurev-phyto-102313-050111

LiY.WangK.LuQ.DuJ.WangZ.WangD.SunB. & LiH. (2017). Transgenic Nicotiana benthamiana plants expressing a hairpin RNAi construct of a nematode Rs-cps gene exhibit enhanced resistance to Radopholus similis. Scientific Reports 713126. DOI: 10.1038/s41598-017-13024-9

LiuW. & WangG.L. (2016). Plant innate immunity in rice: a defense against pathogen infection. National Science Review 3295-308. DOI: 10.1093/nsr/nww015

MaL.LukasikE.GawehnsF. & TakkenF.L.W. (2012). The use of agroinfiltration for transient expression of plant resistance and fungal effector proteins in Nicotiana benthamiana leaves. In: BoltonM.D. & ThommaB.P. (Eds). Plant fungal pathogens. Methods in molecular biology (methods and protocols) 835. New York, NY, USAHumana Press pp. 61-74. DOI: 10.1007/978-1-61779-501-5_4

MantelinS.BellafioreS. & KyndtT. (2017). Pathogen profile. Meloidogyne graminicola: a major threat to rice agriculture. Molecular Plant Pathology 183-15. DOI: 10.1111/mpp.12394

NguyenH.P.ChakravarthyS.VelásquezA.C.McLaneH.L.ZengL.NakayashikiH.ParkD.H.CollmerA. & MartinG.B. (2010). Methods to study PAMP-triggered immunity using tomato and Nicotiana benthamiana. Molecular Plant-Microbe Interactions 23991-999. DOI: 10.1094/MPMI-23-8-0991

Nguyê˜nP.V.BellafioreS.PetitotA.HaidarR.BakA.AbedA.GantetP.MezzaliraI.EnglerJ.D.A. & FernandezD. (2014). Meloidogyne incognita-rice (Oryza sativa) interaction: a new model system to study plant-root-knot nematode interactions in monocotyledons. Rice 723. DOI: 10.1186/s12284-014-0023-4

PerryR.N. (1997). Plant signals in nematode hatching and attraction. In: FenollC.GrundlerF.M.W. & OhlS.A. (Eds). Cellular and molecular aspects of plant-nematode interactions. Developments in plant pathology 10. Dordrecht, The NetherlandsSpringer pp. 38-50. DOI: 10.1007/978-94-011-5596-0_4

PokharelR.R.AbawiG.S.ZhangN.DuxburyJ.M. & SmartC.D. (2007). Characterization of isolates of Meloidogyne from rice-wheat production fields in Nepal. Journal of Nematology 39221-230.

PokharelR.R.AbawiG.S.DuxburyJ.M.SmatC.D.WangX. & BritoJ.A. (2010). Variability and the recognition of two races in Meloidogyne graminicola. Australasian Plant Pathology 39326-333. DOI: 10.1071/AP09100

PostmaW.J.SlootwegE.J.RehmanS.Finkers-TomczakA.TytgatT.O.van GelderenK.Lozano-TorresJ.L.RoosienJ.PompR.van SchaikC. et al. (2012). The effector SPRYSEC-19 of Globodera rostochiensis suppresses CC-NB-LRR-mediated disease resistance in plants. Plant Physiology 160944-954. DOI: 10.1104/pp.112.200188

PrasadJ.S.PanwarM.S. & RaoY.S. (1984). Studies on the control of Meloidogyne graminicola on rice. Nematologia Mediterranea 12141-143.

RamegowdaV. & Senthil-KumarM. (2015). The interactive effects of simultaneous biotic and abiotic stresses on plants: mechanistic understanding from drought and pathogen combination. Journal of Plant Physiology 17647-54. DOI: 10.1016/j.jplph.2014.11.008

ReversatG. & BoyerJ. (1999). A mixture of sand and water-absorbent synthetic polymer as substrate for the xenic culturing. Nematology 1209-212. DOI: 10.1163/156854199508027

ReynoldsA.M.DuttaT.K.CurtisR.H.C.PowersS.J.GaurH.S. & KerryB.R. (2011). Chemotaxis can take plant-parasitic nematodes to the source of a chemo-attractant via the shortest possible routes. Journal of the Royal Society Interface 8568-577. DOI: 10.1098/rsif.2010.0417

SongG. & YamaguchiK. (2003). Efficient agroinfiltration-mediated transient GUS expression system for assaying different promoters in rice. Plant Biotechnology 20235-239. DOI: 10.5511/plantbiotechnology.20.235

YikC. & BirchfieldW. (1979). Host studies and reactions of rice cultivars to Meloidogyne graminicola. Phytopathology 69497-499. DOI: 10.1094/Phyto-69-497

YousifG.M. (1979). Histological responses of four leguminous crops infected with Meloidogyne incognita. Journal of Nematology 11395-401.

ZhangB.YangY.WangJ.LingX.HuZ.LiuT.ChenT. & ZhangW. (2015). A CC-NBS-LRR type gene GHNTR1 confers resistance to southern root-knot nematode in Nicotiana benthamiana and Nicotiana tabacum. European Journal of Plant Pathology 142715-729. DOI: 10.1007/s10658-015-0646-3

Figures

  • View in gallery

    Galls (yellow arrowheads) induced by Meloidogyne graminicola on roots of Oryza sativa, Nicotiana benthamiana and N. tabacum. A: O. sativa (30 days after inoculation (dai)); B: N. benthamiana (30 dai); C: N. tabacum ‘Samsun-NN’ (30 dai). D: N. tabacum ‘Wisconsin 38’ (25 dai).

  • View in gallery

    Fuchsin-stained galls of Meloidogyne graminicola in Oryza sativa, Nicotiana benthamiana and N. tabacum roots at 14 days after inoculation. A: Adult female in O. sativa with clearly visible giant cells; B: Adult females in O. sativa with egg mass; C: Adult female in N. benthamiana with clearly visible giant cells; D: Adult female in N. benthamiana with egg mass; E: Young nematode in N. tabacum ‘Samsun-NN’ with dissected feeding site; F: Adult female in N. tabacum ‘Samsun-NN’ with clearly visible giant cells and small egg mass; G: Young nematode in N. tabacum ‘Wisconsin 38’ with visible giant cells; H: Adult female in N. tabacum ‘Wisconsin 38’ with visible giant cells and egg mass. Asterisk = giant cells, n = nematode, e = egg mass.

  • View in gallery

    Susceptibility of Oryza sativa, Nicotiana benthamiana and N. tabacum to Meloidogyne graminicola. Nematode infection was analysed at 14 days after inoculation on eight plants per group. A: Average number of galls and number of nematodes; B: Average number of females and egg-laying females. Bars represent the average number of galls or nematodes of eight infected plants. Significant difference is indicated by different letters (P<0.05 in Mann-Whitney U-test). Error bars represent the standard error of the mean; C: Percentages of developmental stages. To perform statistics percentage of separate stages were increased by different values (second-stage juveniles (J2) = 1; third- and fourth-stage juveniles (J3/J4) = 2; males and females = 3; egg-laying females = 4). Statistics were performed on total score. Significant difference is indicated by different letters (P<0.05 in Mann-Whitney U-test).

  • View in gallery

    Total number of hatched juveniles from four plants of Oryza sativa, Nicotiana benthamiana and N. tabacum roots.

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 29 29 24
Full Text Views 27 27 23
PDF Downloads 2 2 2
EPUB Downloads 1 1 1