Characterisation of biological and biocontrol traits of entomopathogenic nematodes promising for control of striped flea beetle (Phyllotreta striolata)

in Nematology
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Summary

The biological and biocontrol traits of two entomopathogenic nematode isolates, Steinernema pakistanense 94-1 (Sp94-1) and Heterorhabditis indica 212-2 (Hi212-2), were evaluated. The highest yield of infective juveniles (IJ) in monoxenic sponge culture system for Sp94-1 and Hi212-2 was 3.52 (± 0.45) × 105 and 7.08 (± 0.11) × 105 IJ g−1, respectively. The optimum storage temperature was 25°C for Sp94-1 and 14°C for Hi212-2. Sp94-1 showed greater tolerance to heat exposure and UV radiation, while S. carpocapsae All, a commercial strain, was more resistant to osmotic pressure, desiccation, cold treatment and hypoxia than the other tested isolates. Hi212-2 suppressed the Phyllotreta striolata larvae when applied at 1.5 × 109 IJ ha−1 or higher concentrations, while Sp94-1 suppressed the P. striolata larvae only when applied at 4.5 × 109 IJ ha−1. Our study indicates the possibility of commercialisation of the EPN isolates, and further confirms their efficacy against the P. striolata larvae in the field.

Characterisation of biological and biocontrol traits of entomopathogenic nematodes promising for control of striped flea beetle (Phyllotreta striolata)

in Nematology

Sections

References

AbbottW.S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18265-267.

AndalóV.CavalcantiR.S.MolinaJ.P. & Moino JrA. (2010). Substrates for storing entomopathogenic nematodes (Rhabditida: Steinernematidae, Heterorhabditidae). Scientia Agricola 67342-347.

AndalóV.Moino JrA.MaximiniamoG.CamposV.P. & MendoncaL.A. (2011). Influence of temperature and duration of storage on the lipid reserves of entomopathogenic nematodes. Revista Colombiana de Entomologia 37203-209.

BainA. & LeSageL. (1998). A late seventeenth century occurrence of Phyllotreta striolata (Coleoptera: Chrysomelidae) in North America. Canadian Entomologist 130715-719.

BeddingR.A. (1981). Low cost in vitro mass production of Neoaplectana and Heterorhabditis species (Nematoda) for field control of insect pests. Nematologica 27109-114. DOI: 10.1163/187529281X00115

DaiJ.HanS.LiJ.AnX. & YeJ. (2013). [Trapping effect of yellow sticky board and semiochemicals on vegetable pest striped flea beetle Phyllotreta striolata (F.).] Journal of Southern Agriculture 44422-425.

FengH.T.HuangY.J. & HsuJ.C. (2000). [Insecticide susceptibility of cabbage flea beetle (Phyllotreta striolata (Fab.)) in Taiwan.] Plant Protection Bulletin 42123-146.

FuJ.ChengQ.LinZ. & YouM. (2005). [Ecological disturbance of field Phyllotreta striolata population occurrence.] Chinese Journal of Ecology 24917-920.

GlazerI. (2002). Survival biology. In: GauglerR. (Ed.). Entomopathogenic nematology. Wallingford, UKCAB International pp. 169-187.

GrewalP.S.EhlersR.-U. & Shapiro-IlanD.I. (2005). Nematodes as biocontrol agents. Wallingford, UKCAB International.

HanR. & EhlersR.-U. (2000). Pathogenicity, development, and reproduction of Heterorhabditis bacteriophora and Steinernema carpocapsae under axenic in vivo condition. Journal of Invertebrate Pathology 7555-58. DOI: 10.1006/jipa.1999.4900

HanR.LiL. & PangX. (1997). [Modelling of the culture parameters for production of Steinernema carpocapsae and Heterorhabditis bacteriophora in solid cultures.] Natural Enemies of Insects 1975-83.

HominickW.M. (2002). Biogeography. In: GauglerR. (Ed.). Entomopathogenic nematology. Wallingford, UKCAB International pp. 115-143.

KayaH.K. & GauglerR. (1993). Entomopathogenic nematode. Annual Review of Entomology 38181-206. DOI: 10.1146/annurev.en.38.010193.001145

KoppenhöferA.M.EbssaL. & FuzyE.M. (2013). Storage temperature and duration affect Steinernema scarabaei dispersal and attraction, virulence, and infectivity to a white grub host. Journal of Invertebrate Pathology 112129-137. DOI: 10.1016/j.jip.2012.11.002

LaceyL.A. & GeorgisR. (2012). Entomopathogenic nematodes for control of insect pests above- and below-ground with comments on commercial production. Journal of Nematology 44218-225.

LaiR. & YouM. (2005). [Anti-feeding effect of the extracts from non-preferable plants on adults of the striped flea beetle (Phyllotreta striolata (F.)).] Plant Protection 3137-40.

LiJ.QiuL.WangH. & FuJ. (2007). [Chemicals used for controlling Phyllotreta striolata (F.).] Fujian Journal of Agricultural Sciences 2215-18.

LiangH.XianZ. & LongM. (2007). [Progress in non-environmental polluted control technology of striped flea beetle.] China Vegetables 736-39.

MaJ.ChenS.ZhouY.LiX.HanR.De ClercqP. & MoensM. (2010). Natural occurrence of entomopathogenic nematodes in North China. Russian Journal of Nematology 18117-126.

MaJ.ChenS.MoensM.De ClercqP.LiX. & HanR. (2013). Characterization in biological traits of entomopathogenic nematodes isolated from North China. Journal of Invertebrate Pathology 114268-276. DOI: 10.1016/j.jip.2013.08.012

Mejia-TorresM.C. & SáenzA. (2013). Ecological characterization of the Colombian entomopathogenic nematode Heterorhabditis sp. SL0708. Brazilian Journal of Biology 73239-243. DOI: 10.1590/S1519-69842013000200003

MukukaJ.StrauchO.WaeyenbergeL.ViaeneN.MoensM. & EhlersR.-U. (2010). Heat tolerance among different strains of the entomopathogenic nematode Heterorhabditis bacteriophora. BioControl 55423-434. DOI: 10.1007/s10526-009-9255-4

PetersA.HanR.YanX. & LeiteL.G. (2017). Production of entomopathogenic nematodes. In: LaceyL.A. (Ed.). Microbial control of insect and mite pests: from theory to practice. Cambridge, MA,USAAcademic Press pp. 157-170.

QiaoR.ZhangW.ChengG. & HuM. (2009). [Field evaluation of 5% fipronil suspension concentrates for seed dressing against Phyllotreta striolata Fabricius.] Journal of Changjiang Vegetables 667-69.

QiuX.WuC.CaoL.EhlersR.-U. & HanR. (2016). Photorhabdus luminescens LN2 requires rpoS for nematicidal activity and nematode development. FEMS Microbiology Letters 363fnw035. DOI: 10.1093/femsle/fnw035

QiuY. (2016). [Effect of covering nets to control Phyllotreta striolata on the yield of Bok choy.] Shanghai Vegetables 441-42.

RamakuwelaT.HattingJ.LaingM.D.HazirS. & ThiebautN. (2015). Effect of storage temperature and duration on survival and infectivity of Steinernema innovationi (Rhabditida: Steinernematidae). Journal of Nematology 47332-336.

SalmaJ. & ShahinaF. (2012). Mass production of eight Pakistani strains of entomopathogenic nematodes (Steinernematidae and Heterorhabditidae). Pakistan Journal of Nematology 301-20.

ShahinaF.AnisM.ReidA.P.RoweJ. & MaqboolM.A. (2001). Steinernema pakistanense sp. n. (Rhabditida: Steinernematidae) from Pakistan. International Journal of Nematology 11124-133.

Shapiro-IlanD.I. & McCoyC.W. (2000). Virulence of entomopathogenic nematodes to Diaprepes abbreviates (Coleoptera: Curculionidae) in the laboratory. Journal of Economic Entomology 931090-1095.

Shapiro-IlanD.I.StuartR.J. & McCoyC.W. (2005). Characterization of biological control traits in the entomopathogenic nematode Heterorhabditis mexicana (MX4 strain). Biological Control 3297-103. DOI: 10.1016/j.biocontrol.2004.08.004

Shapiro-IlanD.I.MbataG.N.NguyenK.B.PeatS.M.BlackburnD. & AdamsB.J. (2009). Characterization of biocontrol traits in the entomopathogenic nematode Heterorhabditis georgiana (Kesha strain), and phylogenetic analysis of the nematode’s symbiotic bacteria. Biological Control 51377-387. DOI: 10.1016/j.biocontrol.2009.07.009

Shapiro-IlanD.I.HanR. & QiuX. (2014a). Production of entomopathogenic nematodes. In: Morales-RamosJ.RojasG. & Shapiro-IlanD.I. (Eds). Mass production of beneficial organisms: invertebrates and entomopathogens. Amsterdam, The NetherlandsAcademic Press pp. 321-355.

Shapiro-IlanD.I.BrownI. & LewisE.E. (2014b). Freezing and desiccation tolerance in entomopathogenic nematodes: diversity and correlation of traits. Journal of Nematology 4627-34.

Shapiro-IlanD.I.HazirS. & LeteL. (2015). Viability and virulence of entomopathogenic nematodes exposed to ultraviolet radiation. Journal of Nematology 47184-189.

ShenJ. (2007). [Occurrence and integrated control technology of striped flea beetle.] Fujian Agricultural Science & Technology 358-59.

SolomonA.PapernaI. & GlazerI. (1999). Desiccation survival of the entomopathogenic nematode Steinernema feltiae: induction of anhydrobiosis. Nematology 161-98. DOI: 10.1163/156854199507983

SomasekharN.GrewalP.S. & KleinM.G. (2002). Genetic variability in stress tolerance and fitness among natural populations of Steinernema carpocapsae. Biological Control 23303-310. DOI: 10.1006/bcon.2001.1013

StrauchO.NiemannI.NeumannA.SchmidtA.J.PetersA. & EhlersR.-U. (2000). Storage and formulation of the entomopathogenic nematodes Heterorhabditis indica and H. bacteriophora. BioControl 45483-500. DOI: 10.1023/a:1026528727365

TangY.HeA. & ZhuX. (2009). [Occurrence and control of the striped flea beetle.] Modern Agricultural Science & Technology 4116.

XianZ.QiX.SunJ. & SuJ. (2010). [Activity and efficacy of the six kinds of insecticides for Phyllotreta striolata.] Agrochemicals 49221-227.

XuC.De ClercqP.MoensM.ChenS. & HanR. (2010). Efficacy of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) against the striped flea beetle, Phyllotreta striolata. BioControl 55789-797. DOI: 10.1007/s10526-010-9300-3

YanX. (2012). Osmotically-induced anhydrobiosis in entomopathogenic nematodes used for the integrated management of the striped flea beetle Phyllotreta striolata. Ph.D. thesis. Ghent University Ghent Belgium.

YanX.LiuX.HanR.ChenS.De ClercqP. & Moens M. (2010). Osmotic induction of anhydrobiosis in entomopathogenic nematodes of the genera Heterorhabditis and Steinernema. Biological Control 53325-330. DOI: 10.1016/j.biocontrol.2010.01.009

YanX.MoensM.HanR.ChenS. & De ClercqP. (2012). Effects of selected insecticides on osmotically treated entomopathogenic nematodes. Journal of Plant Disease and Protection 119152-158. DOI: 10.1007/BF03356434

YanX.HanR.MoensM.ChenS. & De ClercqP. (2013). Field evaluation of entomopathogenic nematodes for biological control of striped flea beetle, Phyllotreta striolata (Coleoptera: Chrysomelidae). BioControl 58247-256. DOI: 10.1007/s10526-012-9482-y

ZadjiL.BaimeyH.AfoudaL.MoensM. & DecraemerW. (2014). Characterization of biocontrol traits of heterorhabditids entomopathogenic nematode isolates from south Benin targeting the termite pest Macrotermes bellicosus. BioControl 59333-344. DOI: 10.1007/s10526-014-9568-9

ZhangM.LingB. & LiangG. (2000). [Investigations and analysis of the population dynamics of the striped flea beetle on crucifer vegetables.] Plant Protection 261-3.

ZhangX. & SiX. (2012). [Application techniques of the 0.5% veratine wettable powder.] Nong Yao Yu Zhi Bao 133.

Figures

  • View in gallery

    Yield (mean ± SE) of Steinernema pakistanense 94-1 (A) and Heterorhabditis indica 212-2 (B) produced in in vitro monoxenic sponge culture system at 25 and 30°C for 3-8 weeks. * indicates a significant difference between the two culture temperatures for the same culture period (paired-sample t-tests; P<0.05).

  • View in gallery

    Survival (mean ± SE) of Steinernema pakistanense 94-1 (A) and Heterorhabditis indica 212-2 (B) during storage at 14, 25 and 30°C. Different letters indicate significant differences among different storage periods for the same storage temperature (Tukey’s test; P<0.05).

  • View in gallery

    Corrected mortality (mean ± SE) of Steinernema pakistanense 94-1 (Sp 94-1), S. carpocapsae All (Sc All), Heterorhabditis indica LN2 (Hi LN2) and H. indica 212-2 (Hi 212-2) after heat treatment at 40°C. * indicates significant differences among different isolates for the same treated period (Tukey’s test, F>29.487, df = 3, 12; P<0.001).

  • View in gallery

    Corrected mortality (mean ± SE) of Steinernema pakistanense 94-1 (Sp 94-1), S. carpocapsae All (Sc All), Heterorhabditis indica LN2 (Hi LN2) and H. indica 212-2 (Hi 212-2) after osmotic treatment for 24 and 48 h. Different letters indicate significant differences among different isolates for the same treated period (Tukey’s test, F=35.132 and 120.611 for 24 h and 48 h, respectively, df = 3, 12, P<0.001). * indicates a significant difference between the two treated periods for H. indica LN2 (t=4.635, df = 3, P=0.019).

  • View in gallery

    Corrected mortality (mean ± SE) of Steinernema pakistanense 94-1 (Sp 94-1), S. carpocapsae All (Sc All), Heterorhabditis indica LN2 (Hi LN2) and H. indica 212-2 (Hi 212-2) after desiccation at 93 and 85% RH for 24 and 48 h. Different letter indicates significant differences among different treatments for the same exposure time (Tukey’s test, F=189.681 and 322.715 for 24 and 48 h, respectively, df = 7, 24, P<0.001).

  • View in gallery

    Corrected mortality (mean ± SE) of Steinernema pakistanense 94-1 (Sp 94-1), S. carpocapsae All (Sc All), Heterorhabditis indica LN2 (Hi LN2) and H. indica 212-2 (Hi 212-2) after cold treatment at −5°C for 8 h. Different letters indicate significant differences among different isolates (Tukey’s test, P<0.05).

  • View in gallery

    Corrected mortality (mean ± SE) of Steinernema pakistanense 94-1 (Sp 94-1), S. carpocapsae All (Sc All), Heterorhabditis indica LN2 (Hi LN2) and H. indica 212-2 (Hi 212-2) after UV radiation exposure. Different letters indicate significant differences among different UV radiation exposure periods for the same isolate (Tukey’s test, P<0.05).

  • View in gallery

    Corrected mortality (mean ± SE) of Steinernema pakistanense 94-1 (Sp 94-1), S. carpocapsae All (Sc All), Heterorhabditis indica LN2 (Hi LN2) and H. indica 212-2 (Hi 212-2) after exposure to reduced oxygen level for 24 and 72 h. Different letters indicates significant differences among different isolates for the same exposure period (Tukey’s test, P<0.05). * indicates a significant difference between the two exposure periods for the same isolate (Paired-sample t-tests, P<0.019).

  • View in gallery

    Numbers (mean ± SE) of individuals of the soil-dwelling stages of Phyllotreta striolata per sample 24 days after treatment. A: Experiment conducted in the field grown with Brassica campestris; B: Experiment conducted in the field grown with B. juncea; Sp 94-1: Steinernema pakistanense 94-1; Sc All: S. carpocapsae All; Hi LN2: Heterorhabditis indica LN2; Hi 212-2: H. indica 212-2; CK: water control. H = 4.5 × 109 IJ ha−1, M = 3× 109 IJ ha−1, L = 1.5 × 109 IJ ha−1. Azadirachtin and Veratrine were applied at recommended field rate (1.5 l ha−1). Different letters indicate significant differences among different treatments (Tukey’s test, P<0.05).

  • View in gallery

    Numbers (mean ± SE) of adults of Phyllotreta striolata per plant 24 days after treatment. A: Experiment conducted in the field grown with Brassica campestris; B: Experiment conducted in the field grown with B. juncea; Sp 94-1: Steinernema pakistanense 94-1; Sc All: S. carpocapsae All; Hi LN2: Heterorhabditis indica LN2; Hi 212-2: H. indica 212-2; CK: water control. H = 4.5 × 109 IJ ha−1, M = 3 × 109 IJ ha−1, L = 1.5 × 109 IJ ha−1. Azadirachtin and Veratrine were applied at recommended field rate (1.5 l ha−1).

  • View in gallery

    Yield (mean ± SE) per cabbage 24 days after treatment. A: Experiment conducted in the field grown with Brassica campestris; B: Experiment conducted in the field grown with B. juncea; Sp 94-1: Steinernema pakistanense 94-1; Sc All: S. carpocapsae All; Hi LN2: Heterorhabditis indica LN2; Hi 212-2: H. indica 212-2; CK: water control. H = 4.5 × 109 IJ ha−1, M = 3 × 109 IJ ha−1, L = 1.5 × 109 IJ ha−1. Azadirachtin and Veratrine were applied at recommended field rate (1.5 l ha−1). Bar with * differs significantly from the other treatments (Tukey’s test, P<0.05).

  • View in gallery

    Mortality of Galleria mellonella bait larvae infected by Steinernema pakistanense 94-1 and Heterorhabditis indica 212-2 in the field 24 days after application.

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 14 14 14
Full Text Views 5 5 5
PDF Downloads 1 1 1
EPUB Downloads 0 0 0