Quantitative trait loci mapping of Meloidogyne incognita and M. hapla resistance in a recombinant inbred line population of soybean

in Nematology
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?



A recombinant inbred line population of soybean (Glycine max) was utilised to identify the quantitative trait loci (QTLs) determining the response to infection by two root-knot nematode species, Meloidogyne incognita and M. hapla, in glasshouse assays. QTL analysis detected seven major and four minor QTLs on seven soybean chromosomes ((Chrs) 1, 7, 8, 10, 14, 18, 20) explaining 6-41% phenotypic variance (PVE) for M. incognita root response and nematode reproduction. Three of the major QTLs, on Chrs 7, 10 and 18, were confirmed in previous reports and two major QTLs on Chrs 14 and 20 were detected for the first time. The QTL analysis with M. hapla provides the first report of a major QTL region mapped on Chr 7, explaining 70-82% PVE in M. hapla root response and nematode reproduction. These novel identified QTLs with flanking markers will be helpful in marker-assisted breeding for nematode resistance in soybean.


International Journal of Fundamental and Applied Nematological Research



Bridge, J. & Page, S.L.J. (1980). Estimation of root-knot nematode infection levels on roots using a rating chart. Tropical Pest Management 26, 296-298. DOI: 10.1080/09670878009414416

Churchill, G.A. & Doerge, R.W. (1994). Empirical threshold values for quantitative trait mapping. Genetics 138, 963-971.

Collard, B.C.Y., Jahufer, M.Z.Z., Brouwer, J.B. & Pang, E.C.K. (2005). An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142, 169-196. DOI: 10.1007/s10681-005-1681-5

Concibido, V.C., Diers, B.W. & Arelli, P.R. (2004). A decade of QTL mapping for cyst nematode resistance in soybean. Crop Science 44, 1121-1131. DOI: 10.2135/cropsci2004.1121

Fassuliotis, G., Deakin, J.R. & Hoffman, J.C. (1970). Root-knot nematode resistance in snap beans: breeding and nature of resistance. Journal of the American Society for Horticultural Science 95, 640-645.

Fourie, H., Mc Donald, A.H. & Loots, G.C. (1999). Host suitability of south African commercial soybean cultivars to two root-knot nematode species. African Plant Protection 2, 119-124.

Fourie, H., Mienie, C.M.S., Mc Donald, A.H. & De Waele, D. (2008). Identification and validation of genetic markers associated with Meloidogyne incognita race 2 resistance in soybean, Glycine max (L.) Merr. Nematology 10, 651-661. DOI: 10.1163/156854108785787235

Fourie, H., Mc Donald, A.H. & De Waele, D. (2010). Relationships between initial population densities of Meloidogyne incognita race 2 and nematode population development in terms of variable soybean resistance. Journal of Nematology 42, 55-61.

Fourie, H., Mc Donald, A. & De Waele, D. (2013). Host and yield responses of soybean genotypes resistant or susceptible to Meloidogyne incognita in vivo. International Journal of Pest Management 59, 111-121. DOI: 10.1080/09670874.2013.772261

Fourie, H., De Waele, D., Mc Donald, A.H., Mienie, C. & Marais, M. (2015). Nematode pests threatening soybean production in South Africa, with reference to Meloidogyne. South African Journal of Science 111, 1-9. DOI: 10.17159/sajs.2015/20140212

Gutiérrez, O.A., Jenkins, J.N., McCarty, J.C., Wubben, M.J., Hayes, R.W. & Callahan, F.E. (2010). SSR markers closely associated with genes for resistance to root-knot nematode on chromosomes 11 and 14 of upland cotton. Theoretical & Applied Genetics 121, 1323-1337. DOI: 10.1007/s00122-010-1391-9

Ha, B.K., Bennett, J.B., Hussey, R.S., Finnerty, S.L. & Boerma, H.R. (2004). Pedigree analysis of a major QTL conditioning soybean resistance to southern root-knot nematode. Crop Science 44, 758-763. DOI: 10.2135/cropsci2004.0758

Ha, B.K., Hussey, R.S. & Boerma, H.R. (2007). Development of SNP assays for marker-assisted selection of two southern root-knot nematode resistance QTL in soybean. Crop Science 47(S2), S73-S82. DOI: 10.2135/cropsci2006.10.0660tpg

Harris, D.K., Boerma, H.R., Hussey, R.S. & Finnerty, S.L. (2003). Additional sources of soybean germplasm resistant to two species of root-knot nematode. Crop Science 43, 1848-1851. DOI: 10.2135/cropsci2003.1848

Hartman, K. & Sasser, J.N. (1985). Identification of Meloidogyne species on the basis of differential hosts test and perineal pattern morphology. In: Barker, K.R., Carter, C.C. & Sasser, J.N. (Eds). An advanced treatise on Meloidogyne. volume II, methodology. A cooperative publication of the Department of Plant Pathology and the United States Agency for International Development. Raleigh, NC, USA, North Carolina State University Graphics, pp. 69-77.

He, Y., Kumar, P., Shen, X., Davis, R.F., Van Becelaere, G., May, O.L., Nichols, R. & Chee, P. (2014). Re-evaluation of the inheritance for root-knot nematode resistance in the Upland cotton germplasm line M-120 RNR revealed two epistatic QTLs conferring resistance. Theoretical & Applied Genetics 127, 1343-1351. DOI: 10.1007/s00122-014-2302-2

Hussey, R.S. & Barker, K.R. (1973). A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Disease Reporter 57, 1025-1028.

Hussey, R.S., Boerma, H.R., Raymer, P.L. & Luzzi, B.M. (1991). Resistance in soybean cultivars from maturity groups V-VIII to soybean cyst and root-knot nematodes. Journal of Nematology 23, 576-583.

Jiao, Y., Vuong, T.D., Liu, Y., Li, Z., Noe, J., Robbins, R.T., Joshi, T., Xu, D., Shannon, J.G. & Nguyen, H.T. (2015). Identification of quantitative trait loci underlying resistance to southern root-knot and reniform nematodes in soybean accession PI 567516C. Molecular Breeding 35, 1-10. DOI: 10.1007/s11032-015-0330-5

Kong, F., Liu, B., Xia, Z., Sato, S., Kim, B., Watanabe, S., YamadaT., TabataS., Kanazawa, A., HaradaK. et al. (2010). Two coordinately regulated homologs of FLOWERING LOCUS T are involved in the control of photoperiodic flowering in soybean. Plant Physiology 154, 1220-1231. DOI: 10.1104/pp.110.160796

Kong, F., Nan, H., Cao, D., Li, Y., Wu, F., Wang, J., Lu, S., Yuan, X., Cober, E.R., Abe, J. et al. (2014). A new dominant gene E9 conditions early flowering and maturity in soybean. Crop Science 54, 1-7. DOI: 10.2135/cropsci2014.03.0228

Lee, J., Kim, H., Robbins, R.T., Wrather, J.A., Bond, J., Nguyen, H.T. & Shannon, J.G. (2015). Reaction of soybean cyst nematode resistant plant introductions to root-knot and reniform nematodes. Plant Breeding and Biotechnology 3, 346-354. DOI: 10.9787/PBB.2015.3.4.346

Li, C., Hua, C., Hu, Y., You, J., Mao, Y., Li, J., Tian, Z. & Wang, C. (2016a). Response of soybean genotypes to Meloidogyne incognita and M. hapla in Heilongjiang Province in China. Russian Journal of Nematology 24, 89-98.

Li, C., Hu, Y., Hua, C. & Wang, C. (2016b). Identification of species and races of root-knot nematodes in greenhouse from Daqing city in Heilongjiang Province. Soils and Crops 5, 105-109. DOI: 10.11689/j.issn.2095-2961.2016.02.006

Li, Z., Jakkula, L., Hussey, R., Tamulonis, J. & Boerma, H. (2001). SSR mapping and confirmation of the QTL from PI96354 conditioning soybean resistance to southern root-knot nematode. Theoretical & Applied Genetics 103, 1167-1173. DOI: 10.1007/s001220100

Liao, J., Jiang, H., Sun, L., Hu, X., Zhang, Z. & Wang, X. (2003). Identification of species and race of root-knot nematodes on crops in southern China. Journal of Huazhong Agricultural University 22, 544-548.

Liu, B., Fujita, T., Yan, Z., Sakamoto, S., Xu, D. & Abe, J. (2007). QTL mapping of domestication-related traits in soybean (Glycine max). Annals of Botany 100, 1027-1038. DOI: 10.1093/aob/mcm149

Liu, B., Kanazawa, A., Matsumura, H., Takahashi, R., Harada, K. & Abe, J. (2008). Genetic redundancy in soybean photoresponses associated with duplication of the phytoChrome A gene. Genetics 180, 995-1007. DOI: 10.1534/genetics.108.092742

Liu, B., Watanabe, S., Uchiyama, T., Kong, F., Kanazawa, A., Xia, Z.J., Nagamatsu, A., Arai, M., Yamada, T., Kitamura, K. et al. (2010). The soybean stem growth habit gene Dt1 is an ortholog of Arabidopsis TERMINAL FLOWER1. Plant Physiology 153, 198-210. DOI: 10.1104/pp.109.150607

Lu, S., Li, Y., Wang, J., Nan, H., Cao, D., Li, X., Shi, D., Fang, C., Shi, X., Yuan, X. et al. (2015). Identification of additional QTLs for flowering time by removing the effect of the maturity gene E1 in soybean. Journal of Integrative Agriculture 15, 42-49. DOI: 10.1016/S2095-3119(15)61046-2

Luzzi, B.M., Boerma, H.R. & Hussey, R.S. (1987). Resistance to three species of root-knot nematode in soybean. Crop Science 27, 258-262. DOI: 10.2135/cropsci1987.0011183X002700020027x

Luzzi, B.M., Boerma, H.R. & Hussey, R.S. (1994a). A gene for resistance to the southern root-knot nematode in soybean. Journal of Heredity 85, 484-486. DOI: 10.1093/oxfordjournals.jhered.a111505

Luzzi, B.M., Boerma, H.R. & Hussey, R.S. (1994b). Inheritance of resistance to the southern root-knot nematode in soybean. Crop Science 34, 1240-1243. DOI: 10.2135/cropsci1994.0011183X003400050018x

Moens, M., Perry, R.N. & Starr, J.L. (2009). Meloidogyne species: a diverse group of novel and important plant parasites. In: Perry, R.N., Moens, M. & StarrJ.L. (Eds). Root-knot nematodes. Wallingford, UK, CAB International, pp. 1-17. DOI: 10.1079/9781845934927.0001

Nicol, J.M., Turner, S.J., Coyne, D.L., den Nijs, L., Hockland, S. & Maafi, T.Z. (2011). Current nematode threats to world agriculture. In: Jones, J., Gheysen, G. & Fenoll, C. (Eds). Genomics and molecular genetics of plant-nematode interactions. Dordrecht, The Netherlands, Springer, pp. 21-43. DOI: 10.1007/978-94-007-0434-3_2

Omwega, C.O., Thomason, I.J. & Robert, P.A. (1988). A nondestructive technique for screening bean germ plasm for resistance to Meloidogyne incognita. Plant Disease 72, 970-972. DOI: 10.1094/PD-72-0970

Pham, A.T., McNally, K., Abdel-Haleem, H., Boerma, R.H. & Li, Z. (2013). Fine mapping and identification of candidate genes controlling the resistance to southern root-knot nematode in PI 96354. Theoretical & Applied Genetics 126, 1825-1838. DOI: 10.1007/s00122-013-2095-8

Roberts, P.A. (1995). Conceptual and practical aspects of variability in root-knot nematodes related to host plant resistance. Annual Review of Phytopathology 33, 199-221. DOI: 10.1146/annurev.py.33.090195.001215

Roberts, P.A., Matthews, W.C., Ehlers, J.D. & Helms, D. (2008). Genetic determinants of differential resistance to root-knot nematode reproduction and galling in lima bean. Crop Science 48, 553-561. DOI: 10.2135/cropsci2007.07.0384

Schmitt, D.P. & Noel, G.R. (1984). Nematode parasites of soybean. In: Nickle, W.R. (Ed.). Plant and insect nematodes. New York, USA, Marcel Dekker, pp. 13-59.

Shearin, Z.P., Finnerty, S.L., Wood, E.D., Hussey, R.S. & Boerma, H.R. (2009). A southern root-knot nematode resistance QTL linked to the T-locus in soybean. Crop Science 49, 467-472. DOI: 10.2135/cropsci2007.12.0690

Shepherd, R.L. (1979). A quantitative technique for evaluation cotton for root-knot nematode resistance. Phytopathology 69, 427-430. DOI: 10.1094/Phyto-69-427

Song, Q.J., Marek, L.F., Shoemaker, R.C., Lark, K.G., Concibido, V.C., Delannay, X., Specht, J.E. & Cregan, P.B. (2004). A new integrated genetic linkage map of the soybean. Agronomy and Horticulture – Faculty Publications. http://digitalcommons.unl.edu/agronomyfacpub/21. DOI: 10.1007/s00122-004-1602-3

Takuno, S., Terauchi, R. & Innan, H. (2012). The power of QTL mapping with RILs. PLoS ONE 7(10), e46545. DOI: 10.1371/journal.pone.0046545

Tamulonis, J., Luzzi, B.M., Hussey, R.S., Parrott, W.A. & Boerma, H.R. (1997a). RFLP mapping of resistance to southern root-knot nematode in soybean. Crop Science 37, 1903-1909. DOI: 10.2135/cropsci1997.0011183X003700060039x

Tamulonis, J.P., Luzzi, B.M., Hussey, R.S., Parrott, W.A. & Boerma, H.R. (1997b). DNA markers associated with resistance to Javanese root-knot nematode in soybean. Crop Science 37, 83-788. DOI: 10.2135/cropsci1997.0011183X003700030015x

Tamulonis, J.P., Luzzi, B.M., Hussey, R.S., Parrott, W.A. & Boerma, H.R. (1997c). DNA marker analysis of loci conferring resistance to peanut root-knot nematode in soybean. Theoretical & Applied Genetics 95, 664-670. DOI: 10.1007/s001220050610

Thomas, V.P. & Williamson, V.M. (2013). Segregation and mapping in the root-knot nematode Meloidogyne hapla of quantitatively inherited traits affecting parasitism. Phytopathology 103, 935-940. DOI: 10.1094/PHYTO-03-13-0074-R

Van Ooijen, J.W. (2004). MapQTL® 5, software for the mapping of quantitative trait loci in experimental populations. Wageningen, The Netherlands, Kyazma B.V.

Van Ooijen, J.W. (2006). JoinMap® 4.0 software for the calculations of genetic linkage maps in experimental populations. Wageningen, The Netherlands, Kyazma B.V.

Walters, S.A. & Barker, K.R. (1994). Current distribution of five major Meloidogyne species in the United States. Plant Disease 78, 772-774. DOI: 10.1094/PD-78-0772

Wang, C., Ulloa, M. & Roberts, P.A. (2006). Identification and mapping of microsatellite markers linked to a root-knot nematode resistance gene (rkn1) in Acala NemX cotton (Gossypium hirsutum L.). Theoretical & Applied Genetics 112, 770-777. DOI: 10.1007/s00122-005-0183-0

Wang, C., Ulloa, M., Mullens, T.R., Yu, J.Z. & Roberts, P.A. (2012). QTL analysis for transgressive resistance to root-knot nematode in interspecific cotton (Gossypium spp.) progeny derived from susceptible parents. PLoS ONE 7(4), e34874. DOI: 10.1371/journal.pone

Wang, C., Ulloa, M., Duong, T.T. & Roberts, P.A. (2017a). QTL analysis of transgressive nematode resistance in tetraploid cotton reveals complex interactions in chromosome 11 regions. Frontiers in Plant Science 8, 1979. DOI: 10.3389/fpls.2017.01979

Wang, C., Ulloa, M., Duong, T.T. & Roberts, P.A. (2017b). QTL mapping of multiple independent loci for resistance to Fusarium oxysporum f. sp. vasinfectum races 1 and 4 in an interspecific cotton population. Phytopathology, in press. DOI: 10.1094/PHYTO-06-17-0208-R

Watanabe, S., Xia, Z., Hideshima, R., Tsubokura, Y., Sato, S., Yamanaka, N., Takahashi, R., Anai, T., Satoshi, T., Kitamura, K. et al. (2011). A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics 188, 395-407. DOI: 10.1534/genetics.110.125062

Williamson, V.M. & Gleason, C.A. (2003). Plant-nematode interactions. Current Opinion in Plant Biology 6, 327-333. DOI: 10.1016/S1369-5266(03)00059-1

Williamson, V.M. & Hussey, R.S. (1996). Nematode pathogenesis and resistance in plants. Plant Cell 8, 1735-1745. DOI: 10.1105/tpc.8.10.1735

Windham, G.L. & Williams, W. (1987). Host suitability of commercial corn hybrids to Meloidogyne arenaria and M. incognita. Journal of Nematology 1, 13-16.

Windham, G.L. & Williams, W.P. (1988). Reproduction of Meloidogyne javanica on corn hybrids and inbreds. Journal of Nematology 20 (Annals 2), 25-28.

Wrather, J.A. & Koenning, S.R. (2006). Estimates of disease effects on soybean yields in the United States 2003 to 2005. Journal of Nematology 38, 173-180.

Wrather, J.A., Chambers, A.Y., Fox, J.A., Moore, W.F. & Sciumbato, G.L. (1995). Soybean disease loss estimates for the southern United States, 1974-1994. Plant Disease 79, 1076-1079.

Xia, Z., Watanabe, S., Yamada, T., Tsubokura, Y., Nakashima, H., Zhai, H., Anai, T., Sato, S., Yamazaki, T., , S. et al. (2012). Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. Proceedings of the National Academy of Sciences of the United States of America 109, E2155-E2164. DOI: 10.1073/pnas.1117982109

Xu, X., Zeng, L., Tao, Y., Vuong, T., Wan, J., Boerma, R., Noe, J., Li, Z., Finnerty, S., Pathan, S.M. et al. (2013). Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing. Proceedings of the National Academy of Sciences of the United States of America 110, 13469-13474. DOI: 10.1073/pnas.1222368110

Yates, J.L., Hussey, R.S., Finnerty, S.L. & Boerma, H.R. (2010). Three soybean plant introductions possess unique resistance to peanut root-knot nematode. Crop Science 50, 118-122. DOI: 10.2135/cropsci2009.02.0059

Zhao, L., Duan, Y., Bai, C., Chen, L., Zhu, X. & Sun, X. (2010). Identification and distribution of root-knot nematodes in Liaoning Province. Hubei Agricultural Sciences 49, 865-868.


  • Distribution of estimated random-effect least squares means of galling index (A), egg masses (g root)−1 (B), and log(eggs(groot)1+1) (C) of Meloidogyne incognita in the recombinant inbred line (RIL) population F2:10 (‘TK780’ × ‘H4’). Data were collected 42 days after inoculation. Galling index: 0-10 scale; 0 = no galling; 10 = severe galling. The arrows point to the phenotypic reaction in ‘TK780’ and ‘H4’.

    View in gallery
  • Distribution of estimated random-effect least squares means of galling index (A), egg masses (g root)−1 (B) and log(eggs(groot)1+1) (C) of Meloidogyne hapla in the recombinant inbred line (RIL) population F2:10 (‘TK780’ × ‘H4’). Data were collected 42 days after inoculation. Galling index: 0-10 scale; 0 = no galling; 10 = severe galling. The arrows point to the phenotypic reaction in ‘TK780’ and ‘H4’.

    View in gallery
  • QTLs associated by nonparametric mapping with root-galling index (GI), egg masses (g root)−1 (EM) and nematode egg production (LogEGR) for both Meloidogyne incognita and M. hapla in recombinant inbred line population ‘TK780’ × ‘H4’.

    View in gallery
  • Map locations of QTLs associated with resistance to Meloidogyne incognita Race 1 and variation in root galling (GI), egg-mass production (EM) and egg production (LogEGR) on soybean. The colour bars showed QTL regions based on single-marker analysis using nonparametric mapping (Kruskal-Wallis analysis) test equivalent of the one-way analysis of variance (Van Ooijen 2004). Black bars = QTL influencing root-galling index phenotype; Grey bars – QTL influencing EM production; White bars = QTL influencing EGR phenotype. The LOD intervals (grey solid line) and the phenotypic variance (% Expt I, black line) of major QTLs associated with GI, EM or LogEGR are presented in graph based on the analysis of pairs of linked markers (Interval Mapping) with genome-wide threshold value of LOD (grey dash line, GI: 3.2; EM: 2.5; LogEGR: 3.0) after 1000 permutation test for all traits at a=0.05.

    View in gallery
  • The phenotypic variance (% Expt I) of the major QTL on Chr 7 associated with Meloidogyne hapla in root galling (GI, black solid line), egg-mass production (EM, black dash line) and egg production (LogEGR, grey line) on soybean based on the analysis of Interval Mapping.

    View in gallery


Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 16 16 16
Full Text Views 6 6 6
PDF Downloads 1 1 1
EPUB Downloads 0 0 0