Bacterial symbioses play important roles in shaping diverse biological processes in nematodes, and serve as targets in nematode biocontrol strategies. Focusing on the Xiphinema americanum species complex, we expanded upon recent research investigating patterns of coevolution between Xiphinema spp. and Xiphinematobacter spp., utilising two symbiont genetic markers of varying evolutionary rates. Phylogenetic analysis of nematode mitochondrial DNA (mtDNA) revealed five strongly supported major clades. Analysis of slow-evolving 16S rDNA in bacterial symbionts resulted in a phylogenetic topology composed of four major clades that grouped taxa highly congruent with the nematode mtDNA topology. A faster evolving protein-coding symbiont gene (nad) provided more phylogenetic resolution with seven well-supported clades, also congruent with the nematode mtDNA tree topology. Our results reinforce recent studies suggesting extensive coevolution between Xiphinema spp. and their vertically transmitted endosymbionts Xiphinematobacter spp. and illustrate the advantages of including genetic markers of varying evolutionary rates in coevolutionary and phylogenetic studies.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Brown, A.M.V., Howe, D.K., Wasala, S.K., Peetz, A.B., Zasada, I.A. & Denver, D.R. (2015). Comparative genomics of a plant-parasitic nematode endosymbiont suggest a role in nutritional symbiosis. Genome Biology and Evolution 7, 2727-2746. DOI: 10.1093/gbe/evv176
Brown, A.M.V., Wasala, S.K., Howe, D.K., Peetz, A.B., Zasada, I.A. & Denver, D.R. (2016). Genomic evidence for plant-parasitic nematodes as the earliest Wolbachia hosts. Scientific Reports 6, 34955. DOI: 10.1038/srep34955
Clark, M.A., Moran, N.A., Baumann, P. & Wernegreen, J.J. (2000). Cospeciation between bacterial endosymbionts (Buchnera) and a recent radiation of aphids (Uroleucon) and pitfalls of testing for phylogenetic congruence. Evolution 54, 517-525. DOI: 10.1111/j.0014-3820.2000.tb00054.x
Conow, C., Fielder, D., Ovadia, Y. & Libeskind-Hadas, R. (2010). Jane: a new tool for the cophylogeny reconstruction problem. Algorithms for Molecular Biology 5, 16. DOI: 10.1186/1748-7188-5-16
Coomans, A. & Claeys, M. (1998). Structure of the female reproductive system of Xiphinema americanum (Nematoda: Longidoridae). Fundamental and Applied Nematology 21, 569-580.
Denver, D.R., Brown, A.M.V., Howe, D.K., Peetz, A.B. & Zasada, I.A. (2016). Genome skimming: a rapid approach to gaining diverse biological insights into multicellular pathogens. PLoS Pathogens 12, e1005713. DOI: 10.1371/journal.ppat.1005713
Elkin, C.J., Richardson, P.M., Fourcade, H.M., Hammon, N.M., Pollard, M.J., Predki, P.F., Glavina, T. & Hawkins, T.L. (2001). High-throughput plasmid purification for capillary sequencing. Genome Research 11, 1269-1274. DOI: 10.1101/gr.167801
Forst, S., Dowds, B., Boemare, N. & Stackebrandt, E. (1997). Xenorhabdus and Photorhabdus spp.: bugs that kill bugs. Annual Review of Microbiology 51, 47-72. DOI: 10.1146/annurev.micro.51.1.47
Foster, J., Ganatra, M., Kamal, I., Ware, J., Makarova, K., Ivanova, N., Bhattacharyya, A., Kapatral, V., Kumar, S., Posfai, J. et al. (2005). The Wolbachia genome of Brugia malayi: endosymbiont evolution within a human pathogenic nematode. PLoS Biology 3, 599-614. DOI: 10.1371/journal.pbio.0030121
Fraser, C., Alm, E.J., Polz, M.F., Spratt, B.G. & Hanage, W.P. (2009). The bacterial species challenge: making sense of genetic and ecological diversity. Science 323, 741-746. DOI: 10.1126/science.1159388
Funk, D.J., Helbling, L., Wernegreen, J.J. & Moran, N.A. (2000). Intraspecific phylogenetic congruence among multiple symbiont genomes. Proceedings of the Royal Society B: Biological Sciences 267, 2517-2521. DOI: 10.1098/rspb.2000.1314
Haegeman, A., Vanholme, B., Jacob, J., Vandekerckhove, T.T.M., Claeys, M., Borgonie, G. & Gheysen, G. (2009). An endosymbiotic bacterium in a plant-parasitic nematode: member of a new Wolbachia supergroup. International Journal for Parasitology 39, 1045-1054. DOI: 10.1016/j.ijpara.2009.01.006
He, Y., Jones, J., Armstrong, M., Lamberti, F. & Moens, M. (2005a). The mitochondrial genome of Xiphinema americanum sensu stricto (Nematoda: Enoplea): considerable economization in the length and structural features of encoded genes. Journal of Molecular Evolution 61, 819-833. DOI: 10.1007/s00239-005-0102-7
He, Y., Subbotin, S.A., Rubtsova, T.V., Lamberti, F., Brown, D.J.F. & Moens, M. (2005b). A molecular phylogenetic approach to Longidoridae (Nematoda: Dorylaimida). Nematology 7, 111-124. DOI: 10.1163/15698541054192108
Holterman, M., van der Wurff, A., van den Elsen, S., van Megen, H., Bongers, T., Holovachov, O., Bakker, J. & Helder, J. (2006). Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown clades. Molecular Biology and Evolution 23, 1792-1800. DOI: 10.1093/molbev/msl044
Kumar, S., Stecher, G., Tamura, K., Gerken, J., Pruesse, E., Quast, C., Schweer, T., Peplies, J., Ludwig, W. & Glockner, F.O. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33, 1870-1874. DOI: 10.1093/molbev/msw054
Lane, D.J., Pace, B., Olsen, G.J., Stahl, D.A., Sogin, M.L. & Pace, N.R. (1985). Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proceedings of the National Academy of Sciences of the United States of America 82, 6955-6959.
Lazarova, S.S., Brown, D.J.F., Marcelo, C., Oliveira, G., Fenton, B., Mackenzie, K., Wright, F., Malloch, G. & Neilson, R. (2016). Diversity of endosymbiont bacteria associated with a non-filarial nematode group. Nematology 18, 615-623. DOI: 10.1163/15685411-00002982
Liu, L., Huang, X., Zhang, R., Jiang, L. & Qiao, G. (2013). Phylogenetic congruence between Mollitrichosiphum (Aphididae: Greenideinae) and Buchnera indicates insect-bacteria parallel evolution. Systematic Entomology 38, 81-92. DOI: 10.1111/J.1365-3113.2012.00647.X
Murfin, K.E., Dillman, A.R., Foster, J.M., Bulgheresi, S., Slatko, B.E., Sternberg, P.W. & Goodrich-Blair, H. (2012). Nematode-bacterium symbioses – cooperation and conflict revealed in the ‘omics’ age. The Biological Bulletin 223, 85-102. DOI: 10.1086/BBLv223n1p85
Noel, G.R. & Atibalentja, N. (2006). ‘Candidatus Paenicardinium endonii’, an endosymbiont of the plant-parasitic nematode Heterodera glycines (Nemata: Tylenchida), affiliated to the phylum Bacteroidetes. International Journal of Systematic and Evolutionary Microbiology 56, 1697-1702. DOI: 10.1099/ijs.0.64234-0
Orlando, V., Chitambar, J.J., Dong, K., Chizhov, V.N., Mollov, D., Bert, W. & Subbotin, S.A. (2016). Molecular and morphological characterisation of Xiphinema americanum-group species (Nematoda: Dorylaimida) from California, USA, and other regions, and co-evolution of bacteria from the genus Candidatus Xiphinematobacter with nematodes. Nematology 18, 1015-1043. DOI: 10.1163/15685411-00003012
Palomares-Rius, J.E., Archidona-Yuste, A., Cantalapiedra-Navarrete, C., Prieto, P. & Castillo, P. (2016). Molecular diversity of bacterial endosymbionts associated with dagger nematodes of the genus Xiphinema (Nematoda: Longidoridae) reveals a high degree of phylogenetic congruence with their host. Molecular Ecology 25, 6225-6247. DOI: 10.1111/mec.13904
Palomares-Rius, J.E., Cantalapiedra-Navarrete, C., Archidona-Yuste, A., Subbotin, S.A. & Castillo, P. (2017). The utility of mtDNA and rDNA for barcoding and phylogeny of plant-parasitic nematodes from Longidoridae (Nematoda, Enoplea). Scientific Reports 7, 10905. DOI: 10.1038/s41598-017-11085-4
Stock, S.P. & Burnell, A. (2000). Heterorhabditis, Steinernema and their bacterial symbionts – lethal pathogens of insects. Nematology 2, 31-42. DOI: 10.1163/156854100508872
Vandekerckhove, T.T.M., Willems, A., Gillis, M. & Coomans, A. (2000). Occurrence of novel verrucomicrobial species, endosymbiotic and associated with parthenogenesis in Xiphinema americanum-group species (Nematoda, Longidoridae). International Journal of Systematic and Evolutionary Microbiology 50, 2197-2205. DOI: 10.1099/00207713-50-6-2197
Vandekerckhove, T.T.M., Coomans, A., Cornelis, K., Baert, P. & Gillis, M. (2002). Use of the Verrucomicrobia-specific probe EUB338-III and fluorescent in situ hybridization for detection of “Candidatus Xiphinematobacter” cells in nematode hosts. Applied and Environmental Microbiology 68, 3121-3125. DOI: 10.1128/AEM.68.6.3121-3125.2002
Wang, Y. & Qian, P.-Y. (2009). Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS ONE 4, e7401. DOI: 10.1371/journal.pone.0007401
Williams, B.D., Schrank, B., Huynh, C., Shownkeen, R. & Waterston, R.H. (1992). A genetic mapping system in Caenorhabditis elegans based on polymorphic sequence-tagged sites. Genetics 131, 609-624.
Woese, C.R. (1987). Bacterial evolution. Microbiological Reviews 51, 221-271.
Zasada, I.A., Peetz, A., Howe, D.K., Wilhelm, L.J., Cheam, D., Denver, D.R. & Smythe, A.B. (2014). Using mitogenomic and nuclear ribosomal sequence data to investigate the phylogeny of the Xiphinema americanum species complex. PLoS ONE 9, e90035. DOI: 10.1371/journal.pone.0090035
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 1071 | 133 | 4 |
Full Text Views | 85 | 22 | 1 |
PDF Views & Downloads | 98 | 40 | 2 |
Bacterial symbioses play important roles in shaping diverse biological processes in nematodes, and serve as targets in nematode biocontrol strategies. Focusing on the Xiphinema americanum species complex, we expanded upon recent research investigating patterns of coevolution between Xiphinema spp. and Xiphinematobacter spp., utilising two symbiont genetic markers of varying evolutionary rates. Phylogenetic analysis of nematode mitochondrial DNA (mtDNA) revealed five strongly supported major clades. Analysis of slow-evolving 16S rDNA in bacterial symbionts resulted in a phylogenetic topology composed of four major clades that grouped taxa highly congruent with the nematode mtDNA topology. A faster evolving protein-coding symbiont gene (nad) provided more phylogenetic resolution with seven well-supported clades, also congruent with the nematode mtDNA tree topology. Our results reinforce recent studies suggesting extensive coevolution between Xiphinema spp. and their vertically transmitted endosymbionts Xiphinematobacter spp. and illustrate the advantages of including genetic markers of varying evolutionary rates in coevolutionary and phylogenetic studies.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 1071 | 133 | 4 |
Full Text Views | 85 | 22 | 1 |
PDF Views & Downloads | 98 | 40 | 2 |