Ultrastructural analysis of the early development of nematodes is hampered by the impermeability of the eggshell to most commonly used fixatives. High-pressure freezing (HPF), a physical cryo-fixation method, facilitates a fast rate of fixation, and by using this method the issue of the uneven delivery of fixative is circumvented. Although HPF results in a superior preservation of the fine structure, the equipment costs impede a wider application of this method. Self-pressurised rapid freezing (SPRF) is an alternative low-cost cryo-fixation method, and its usefulness was evaluated in an ultrastructural study of the eggshell and the cuticle of unhatched second-stage juveniles (J2) of Globodera rostochiensis and Heterodera schachtii. A comparison with conventional (chemical) fixation demonstrates that SPRF fixation results in a remarkably well-preserved ultrastructure of the entire egg including both the eggshell and the cellular details of the unhatched J2. Therefore, SPRF fixation is proposed as an affordable, relatively easy-to-use and time-efficient technique to study the ultrastructure of unhatched J2 and eggs of nematodes.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Anya, A.O. (1976). Physiological aspects of reproduction in nematodes. Advances in Parasitology 14, 267-351.
Baunacke, W. (1922). Untersuchungen zur biologie und bekämpfung der rübennematoden, Heterodera schachtii Schmidt. Arbeiten aus der Biologischen Reichsanstalt Berlin 11, 185-288.
Bert, W., Slos, D., Leroux, O. & Claeys, M. (2016). Cryo-fixation and associated developments in transmission electron microscopy: a cool future for nematology. Nematology 18, 1-14. DOI: 10.1163/15685411-00002943
Bird, A.F. & Bird, J. (1991). The structure of nematodes. London, UK, Academic Press.
Carson, J.L. (2014). Fundamental technical elements of freeze-fracture/freeze-etch in biological electron microscopy. Journal of Visualized Experiments 91, e51694. DOI: 10.3791/51694
Claeys, M., Vanhecke, D., Couvreur, M., Tytgat, T., Coomans, A. & Borgonie, G. (2004). High-pressure freezing and freeze substitution of gravid Caenorhabditis elegans (Nematode: Rhabditida) for transmission electron microscopy. Nematology 6, 319-327. DOI: 10.1163/1568541042360564
Claeys, M., Yushin, V.V., Leunissen, J.L.M., Claeys, J. & Bert, W. (2017). Self-pressurised rapid freezing (SPRF): an easy-to-use and low-cost alternative cryo-fixation method for nematodes. Nematology 19, 1-11. DOI: 10.1163/15685411-00003093
Decraemer, W., Karanastasi, E., Brown, D. & Backeljau, T. (2003). Review of the ultrastructure of the nematode body cuticle and its phylogenetic interpretation. Biological Reviews 78, 465-510. DOI: 10.1017/s1464793102006115
Ferguson, D.J.P. & Dubremetz, J.-F. (2014). The ultrastructure of Toxoplasma gondii. In: Weiss, L.M. & Kim, K. (Eds). Toxoplasma gondii the model apicomplexan – perspectives and methods, 2nd edition. New York, NY, USA, Elsevier, pp. 19-59. DOI: 10.1016/B978-0-12-396481-6.00002-7
Folkertsma, R.T., Helder, J., Gommers, F.J. & Bakker, J. (1997). Storage of potato cyst nematodes at −80°C. Fundamental and Applied Nematology 20, 299-302.
Grabenbauer, M., Han, H.M. & Huebinger, J. (2014). Cryo-fixation by self-pressurized rapid freezing. Methods in Molecular Biology 1117, 173-191. DOI: 10.1007/978-1-62703-776-1_9
Hall, D.H., Hartwieg, E. & Nguyen, K.C.Q. (2012). Modern electron microscopy methods for C. elegans. In: Rothman, J.H. & Singson, A. (Eds). Methods in cell biology, Vol. 107, Caenorhabditis elegans: cell biology and physiology, 2nd edition. New York, NY, USA, Elsevier, pp. 93-149. DOI: 10.1016/B978-0-12-394620-1.00004-7
Han, H.M., Huebinger, J. & Grabenbauer, M. (2013). Self-pressurized rapid freezing (SPRF) as a simple fixation method for cryo-electron microscopy of vitreous sections. Journal of Structural Biology 178, 84-87. DOI: 10.1016/j.jsb.2012.04.001
Huebinger, J. & Grabenbauer, M. (2018). Self-pressurized rapid freezing as cryo-fixation method for electron microscopy and cryopreservation of living cells. Current Protocols in Cell Biology 79, e47. DOI: 10.1002/cpcb.47
Huebinger, J., Han, H.M. & Grabenbauer, M. (2016). Reversible cryopreservation of living cells using an electron microscopy cryo-fixation method. PLoS ONE 11, e0164270. DOI: 10.1371/journal.pone.0164270
Jones, J.T. & Gwynn, I.A. (1991). A method for rapid fixation and dehydration of nematode tissue for transmission electron microscopy. Journal of Microscopy 164, 43-51. DOI: 10.1111/j.1365-2818.1991.tb03190.x
Jones, J.T., Perry, R.N. & Johnston, M.R.J. (1993). Changes in the ultrastructure of the cuticle of the potato cyst nematode, Globodera rostochiensis, during development and infection. Fundamental and Applied Nematology 16, 433-445.
Krieg, C., Thomas, C., Deppe, U., Schierenberg, E., Schmitt, D., Yoder, B. & Ehrenstein, G.A. (1978). The cellular anatomy of embryos of the nematode Caenorhabditis elegans: analysis and reconstruction of serial section electron micrographs. Developmental Biology 65, 193-215. DOI: 10.1016/0012-1606(78)90190-2
Leunissen, J.L.M. & Yi, H. (2009). Self-pressurized rapid freezing (SPRF): a novel cryo-fixation method for specimen preparation in electron microscopy. Journal of Microscopy 235, 25-35. DOI: 10.1111/j.1365-2818.2009.03178.x
Mielanczyk, L., Matysiak, N., Michalski, M., Buldak, R. & Wojnicz, R. (2014). Closer to the native state. Critical evaluation of cryo-techniques for transmission electron microscopy: preparation of biological samples. Folia Histochemica et Cytobiologica 52, 1-17. DOI: 10.5603/FHC.2014.0001
Müller-Reichert, T., Mäntler, J., Srayko, M. & O’Toole, E. (2008). Electron microscopy of the early Caenorhabditis elegans embryo. Journal of Microscopy 230, 297-307. DOI: 10.1111/j.1365-2818.2008.01985.x
Perry, R.N. & Trett, M.W. (1986). Ultrastructure of the eggshell of Heterodera schachtii and H. glycines (Nematoda: Tylenchida). Revue de Nématologie 9, 399-403.
Perry, R.N., Wharton, D.A. & Clarke, A.J. (1982). The structure of the egg-shell of Globodera rostochiensis (Nematoda: Tylenchida). International Journal for Parasitology 12, 481-485. DOI: 10.1016/0020-7519(82)90080-7
Priess, J.R. & Hirsh, D.I. (1986). Caenorhabditis elegans morphogenesis: the role of the cytoskeleton in elongation of the embryo. Developmental Biology 117, 156-173. DOI: 10.1016/0012-1606(86)90358-1
Robson, A.L., Dastoor, P.C., Flynn, J., Palmer, W., Martin, A., Smith, D.W., Woldu, A. & Hua, S. (2018). Advantages and limitations of current imaging techniques for characterizing liposome morphology. Frontiers in Pharmacology 9, 80. DOI: 10.3389/fphar.2018.00080
Sarkar, P., Bosneaga, E., Yap Jr, E.G., Das, J., Tsai, W.-T., Cabal, A., Neuhaus, E., Maji, D., Kumar, S. & Joo, M. (2014). Electron tomography of cryo-immobilized plant tissue: a novel approach to studying 3D macromolecular architecture of mature plant cell walls in situ. PLoS ONE 9, e106928. DOI: 10.1371/journal.pone.0106928
Schierenberg, E. (2001). Three sons of fortune: early embryogenesis, evolution and ecology of nematodes. BioEssays 23, 841-847. DOI: 10.1002/bies.1119
Schierenberg, E. (2006). Embryological variation during nematode development. In: WormBook (Ed.). The C. elegans Research Community, WormBook. DOI: 10.1895/wormbook.1.55.1
Schierenberg, E. & Cassada, R. (1986). Der nematode Caenorhabditis elegans-ein entwicklungsbiologischer modellorganismus. Biologie in unserer Zeit 16, 1-7. DOI: 10.1002/biuz.19860160104
Vancoppenolle, B., Claeys, M., Borgonie, G., Tytgat, T. & Coomans, A. (2000). Evaluation of fixation methods for ultrastructural study of Caenorhabditis elegans embryos. Microscopy Research and Technique 49, 212-216. DOI: 10.1002/(SICI)1097-0029(20000415)49:2<212::AID-JEMT15>3.0.CO;2-1
Wolf, N., Priess, J. & Hirsch, D. (1983). Segregation of germline in early embryos of Caenorhabditis elegans: an electron microscopy analysis. Journal of Embryology Experimental Morphology 73, 207-306.
Yushin, V.V., Coomans, A., Borgonie, G. & Malakhov, V.V. (2002). Ultrastructural study of cuticle formation during embryogenesis of the free-living marine nematode Enoplus demani (Enoplida). Invertebrate Reproduction & Development 42, 189-203. DOI: 10.1080/07924259.2002.9652775
Ultrastructural analysis of the early development of nematodes is hampered by the impermeability of the eggshell to most commonly used fixatives. High-pressure freezing (HPF), a physical cryo-fixation method, facilitates a fast rate of fixation, and by using this method the issue of the uneven delivery of fixative is circumvented. Although HPF results in a superior preservation of the fine structure, the equipment costs impede a wider application of this method. Self-pressurised rapid freezing (SPRF) is an alternative low-cost cryo-fixation method, and its usefulness was evaluated in an ultrastructural study of the eggshell and the cuticle of unhatched second-stage juveniles (J2) of Globodera rostochiensis and Heterodera schachtii. A comparison with conventional (chemical) fixation demonstrates that SPRF fixation results in a remarkably well-preserved ultrastructure of the entire egg including both the eggshell and the cellular details of the unhatched J2. Therefore, SPRF fixation is proposed as an affordable, relatively easy-to-use and time-efficient technique to study the ultrastructure of unhatched J2 and eggs of nematodes.