The cyst nematode, Heterodera glycines, is a major pathogen of soybean in tropical regions, which demands novel sustainable management practices. In this work, the use of ethanol against H. glycines was evaluated as both a solution and a fumigant. On second-stage juveniles (J2) of H. glycines, ethanol at low concentration was more effective by direct dipping than by only fumigating the J2. Hatching was significantly reduced by direct dipping in ethanol solutions. Fumigation of H. glycines-infested soil with ethanol reduced infectivity by almost 100% and the number of eggs by about 67% at ethanol concentrations of 48% and 72%, respectively. Only the ethanol at 48% concentration significantly reduced the J2 lipid content, while J2 infectivity and the number of eggs were reduced by dipping at 6% ethanol. The J2 were internally altered by the ethanol solutions. Therefore, ethanol is toxic to H. glycines at low concentrations and affects its pathogenic behaviour rather than simply reducing the lipids.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Aissani, N., Urgeghe, P.P., Oplos, C., Saba, M., Tocco, G., Petretto, G.L., Eloh, K., Menkissoglu-Spiroudi, U., Ntalli, N. & Caboni, P. (2015). Nematicidal activity of the volatilome of Eruca sativa on Meloidogyne incognita. Journal of Agricultural and Food Chemistry 63, 6120-6125. DOI: 10.1021/acs.jafc.5b02425
Andaló, V., Moino, A., Maximiniano, C., Campos, V.P. & Mendonca, L.A. (2011). Influence of temperature and duration of storage on the lipid reserves of entomopathogenic nematodes. Revista Colombiana de Entomología 37, 203-209.
Babaali, D., Roeb, J., Hammache, M. & Hallmann, J. (2017). Nematicidal potential of aqueous and ethanol extracts gained from Datura stramonium, D. innoxia and D. tatula on Meloidogyne incognita. Journal of Plant Diseases and Protection 124, 339-348. DOI: 10.1007/s41348-017-0079-7
Barros, A.F., Campos, V.P., Silva, J.C.P., Lopez, L.E., Silva, A.P., Pozza, E.A. & Pedroso, L.A. (2014a). Tempo de exposição de juvenis de segundo estádio a voláteis emitidos por macerados de nim e de mostarda e biofumigação contra Meloidogyne incognita. Nematropica 44, 190-199.
Barros, A.F., Campos, V.P., da Silva, J.C.P., Pedroso, M.P., Medeiros, F.H.V., Pozza, E.A. & Reale, A.L. (2014b). Nematicidal activity of volatile organic compounds emitted by Brassica juncea, Azadirachta indica, Canavalia ensiformis, Mucuna pruriens and Cajanus cajan against Meloidogyne incognita. Applied Soil Ecology 80, 34-43.
Campos, H.D., Campos, V.P. & Pozza, E.A. (2006). Efeito do tempo e da temperatura de incubação de juvenis do segundo estádio (J2) no teor de lipídio corporal e no parasitismo de Meloidogyne javanica em soja. Fitopatologia Brasileira 31, 387-393.
Chen, S.Y., Porter, P.M., Orf, J.H., Reese, C.D., Stienstra, W.C., Young, N.D., Walgenbach, D.D., Schaus, P.J., Arlt, T.J. & Breitenbach, F.R. (2001). Soybean cyst nematode population development and associated soybean yields of resistant and susceptible cultivars in Minnesota. Plant Disease 85, 760-766. DOI: 10.1094/PDIS.2001.85.7.760
Christophers, A.E.P., Patel, M.N., Benson, J.A., Saka, V.W., Evans, A.A.F. & Wright, D.J. (1997). A rapid field-laboratory bioassay to assess the infectivity of Meloidogyne spp. second stage juveniles. Nematologica 43, 117-120. DOI: 10.1163/004725997X00089
CONAB (Companhia Nacional de Abastecimento) (2018). Acompanhamento da safra brasileira de grãos. V.6 – Safra 2018/19 – N. 1 – Primeiro levantamento. https://www.conab.gov.br/info-agro/safras/graos. Accessed: 4 February 2019.
Dao, T. & Dantigny, P. (2011). Control of food spoilage fungi by ethanol. Food Control 22, 360-368. DOI: 10.1016/j.foodcont.2010.09.019
Davies, A.G., Bettinger, J.C., Thiele, T.R., Judy, M.E. & McIntire, S.L. (2004). Natural variation in the npr-1 gene modifies ethanol responses of wild strains of C. elegans. Neuron 42, 731-743. DOI: 10.1016/j.neuron.2004.05.004
Davies, K.G. & Curtis, R.H.C. (2011). Cuticle surface coat of plant-parasitic nematodes. Annual Review of Phytopathology 49, 135-156. DOI: 10.1146/annurev-phyto-121310-111406
Davis, J.R., Li, Y. & Rankin, C.H. (2008). Effects of developmental exposure to ethanol on Caenorhabditis elegans. Alcoholism: Clinical and Experimental Research 32, 853-867. DOI: 10.1111/j.1530-0277.2008.00639.x
Dawar, S., Younus, S.M. & Zaki, M.J. (2007). Use of Eucalyptus sp. in the control of Meloidogyne javanica root knot nematode. Pakistan Journal of Botany 39, 2209-2214.
Dhawan, R., Dusenbery, D.B. & Williams, P.L. (1999). Comparison of lethality, reproduction and behavior as toxicological endpoints in the nematode Caenorhabditis elegans. Journal of Toxicology and Environmental Health 58, 451-462. DOI: 10.1080/009841099157179
Eisenback, J.D. (1985). Detailed morphology and anatomy of second-stage juveniles, males and females of the genus Meloidogyne (root-knot nematodes). In: Barker, K.R. & Carter, C.C. (Eds). An advance treatise on Meloidogyne. Vol. 2, Methodology. Raleigh, NC, USA, North Carolina State University Graphics, pp. 47-78.
Han, Y., Zhao, X., Cao, G., Wang, Y., Li, Y., Liu, D., Qiu, L., Zheng, H. & Li, W. (2015). Genetic characteristics of soybean resistance to HG type 0 and HG type 1.2.3.5.7 of the cyst nematode analyzed by genome-wide association mapping. BMC Genomics 16, 598. DOI: 10.1186/s12864-015-1800-1
Hartman, G.L., Pawlowski, M.L., Herman, T.K. & Eastburn, D. (2016). Organically grown soybean production in the USA: constraints and management of pathogens and insect pests. Agronomy 6, 16. DOI: 10.3390/agronomy6010016
Hewavitharana, S.S., Ruddell, D. & Mazzola, M. (2014). Carbon source-dependent antifungal and nematicidal volatiles derived during anaerobic soil disinfestation. European Journal of Plant Pathology 140, 39-52. DOI: 10.1007/s10658-014-0442-5
Ito, T., Araki, M., Komatsuzaki, M., Kaneko, N. & Ohta, H. (2015). Soil nematode community structure affected by tillage systems and cover crop managements in organic soybean production. Applied Soil Ecology 86, 137-147. DOI: 10.1016/j.apsoil.2014.10.003
Jardim, I.N., Oliveira, D.F., Silva, G.H., Campos, V.P. & de Souza, P.E. (2018). (E)-cinnamaldehyde from the essential oil of Cinnamomum cassia controls Meloidogyne incognita in soybean plants. Journal of Pest Science 91, 479-487. DOI: 10.1007/s10340-017-0850-3
Karabulut, O.A., Smilanick, J.L., Gabler, F.M., Mansour, M. & Droby, S. (2003). Near-harvest applications of Metschnikowia fructicola, ethanol, and sodium bicarbonate to control postharvest diseases of grape in central California. Plant Disease 87, 1384-1389. DOI: 10.1094/PDIS.2003.87.11.1384
Larsen, T.O. & Frisvad, J.C. (1995). Characterization of volatile metabolites from 47 Penicillium taxa. Mycological Research 99, 1153-1166. DOI: 10.1016/S0953-7562(09)80271-2
Lee, D.L. & Atkinson, H.J. (1977). Physiology of nematodes. New York, NY, USA, Columbia University.
Lee, K.S. & Choe, Y.C. (2019). Environmental performance of organic farming: evidence from Korean small-holder soybean production. Journal of Cleaner Production 211, 742-748. DOI: 10.1016/j.jclepro.2018.11.075
Leite, M.L.T., de Almeida, F.A., Fonseca, W.L., de Oliveira, A.M., Prochnow, J.T., Pereira, F.F. & de Alcântara Neto, F. (2019). Effect of vinasse in the suppressiveness to Pratylenchus brachyurus in soybean. Journal of Agricultural Science 11, 538-545. DOI: 10.5539/jas.v11n1p538
Lichter, A., Zutkhy, Y., Sonego, L., Dvir, O., Kaplunov, T., Sarig, P. & Ben-Arie, R. (2002). Ethanol controls postharvest decay of table grapes. Postharvest Biology and Technology 24, 301-308. DOI: 10.1016/S0925-5214(01)00141-7
Lima, D., Santos, A.M.B., Garcia, A. & Oliveira, A.B. (2008). A Produção Integrada de Soja. Londrina, Brazil, Embrapa Soja.
McBride, W. & Greene, C. (2009). The profitability of organic soybean production. Renewable Agriculture and Food Systems 24, 276-284.
Mishra, P. (1993). Tolerance of fungi to ethanol. In: Jennings, D.H. (Ed.). Stress tolerance of fungi. New York, USA, Marcel Dekker, pp. 189-208.
Momma, N., Momma, M. & Kobara, Y. (2010). Biological soil disinfestation using ethanol: effect on Fusarium oxysporum f. sp. lycopersici and soil microorganisms. Journal of General Plant Pathology 76, 336-344. DOI: 10.1007/s10327-010-0252-3
Momma, N., Kobara, Y., Uematsu, S., Kita, N. & Shinmura, A. (2013). Development of biological soil disinfestations in Japan. Applied Microbiology and Biotechnology 97, 3801-3809. DOI: 10.1007/s00253-013-4826-9
Morgan, P.G. & Sedensky, M.M. (1995). Mutations affecting sensitivity to ethanol in the nematode, Caenorhabditis elegans. Alcoholism: Clinical and Experimental Research 19, 1423-1429. DOI: 10.1111/j.1530-0277.1995.tb01002.x
Pedrosa, E.M., Rolim, M.M., Albuquerque, P.H. & Cunha, A.C. (2005). Supressividade de nematóides em cana-de-açúcar por adição de vinhaça ao solo. Revista Brasileira de Engenharia Agrícola e Ambiental 9, 197-201.
Pedroso, L.A., Campos, V.P., Pedroso, M.P., Barros, A.F., Freire, E.S. & Resende, F.M. (2019). Volatile organic compounds produced by castor bean cake incorporated into the soil exhibit toxic activity against Meloidogyne incognita. Pest Management Science 75, 476-483. DOI: 10.1002/ps.5142
Perry, R.N. & Trett, M.W. (1986). Ultrastructure of the eggshell of Heterodera schachtii and H. glycines (Nematoda: Tylenchida). Revue de Nématologie 9, 399-403.
Reversat, G. (1980). Effect of in vitro storage on the physiology of second stage juveniles of Heterodera oryzae. Revue de Nématologie 3, 233-241.
Reversat, G. (1981). Consumption of food reserves by starved second-stage juveniles of Meloidogyne javanica under conditions inducing osmobiosis. Nematologica 27, 207-214. DOI: 10.1163/187529281X00269
Rocha, F.S., Campos, V.P., Canuto, R.S. & de Souza, R.M. (2009). Efeito do armazenamento na energia corporal de juvenis do segundo estádio de Meloidogyne incognita infestados por Pasteuria penetrans. Summa Phytopathologica 35, 15-19.
Romanazzi, G., Lichter, A., Gabler, F.M. & Smilanick, J.L. (2012). Recent advances on the use of natural and safe alternatives to conventional methods to control postharvest gray mold of table grapes. Postharvest Biology and Technology 63, 141-147. DOI: 10.1016/j.postharvbio.2011.06.013
Schmutz, J., Cannon, S.B., Schlueter, J., Ma, J., Mitros, T., Nelson, W., Hyten, D.L., Song, Q., Thelen, J.J., Cheng, J. et al. (2010). Genome sequence of the palaeopolyploid soybean. Nature 463, 178-183. DOI: 10.1038/nature08670
Silva, J.C.P., Campos, V.P., Freire, E.S., Terra, W.C. & Lopez, L.E. (2017). Toxicity of ethanol solutions and vapours against Meloidogyne incognita. Nematology 19, 271-280. DOI: 10.1163/15685411-00003046
Silva, J.C.P., Campos, V.P., Barros, A.F., Pedroso, L.A., Silva, M.F., Souza, J.T., Pedroso, M.P. & Medeiros, F.H.V. (2019). Performance of volatiles emitted from different plant species against juveniles and eggs of Meloidogyne incognita. Crop Protection 116, 196-203. DOI: 10.1016/j.cropro.2018.11.006
Soares, P.L.M., Otoboni, C.E.M., Batista, E.S.P. & Santos, J.M. (2016). Agricultura de precisão e os nematoides. In: Galbieri, R. & Belot, J.L. (Eds). Nematoides fitoparasitas do algodoeiro nos cerrados brasileiros: biologia e medidas de controle. Cuiabá, Instituto Mato-grossense do Algodão – IMAmt, pp. 125-164.
Storey, R.M.J. (1983). The initial neutral lipid reserves of juveniles of Globodera spp. Nematologica 29, 144-150. DOI: 10.1163/187529283X00410
Tariq, M., Shahnaz, D., Mehdi, F.M. & Zaki, M.J. (2007). Use of Rhizophora mucronata in the control of Meloidogyne javanica root-knot nematode on okra and mash bean. Pakistan Journal of Botany 39, 265-270.
Terra, W.C., Campos, V.P., Martins, S.J., Costa, L.S.A.S., Silva, J.C.P., Barros, A.F., Estupiñan-Lopez, L., Santos, T.C.N.S., Smant, G. & Oliveira, D.F. (2018). Volatile organic molecules from Fusarium oxysporum strain 21 with nematicidal activity against Meloidogyne incognita. Crop Protection 106, 125-131. DOI: 10.1016/j.cropro.2017.12.022
USDA (United States Department of Agriculture) (2018). World Agricultural Production. Circular Series. WAP 10-18. Available online at https://downloads.usda.library.cornell.edu/usda-esmis/files/5q47rn72z/x633f441c/tt44pr66j/World_Ag_Production_Oct2018.pdf (accessed 4 February 2019).
Utama, I.M., Wills, R.B., Ben-Yehoshua, S. & Kuek, C. (2002). In vitro efficacy of plant volatiles for inhibiting the growth of fruit and vegetable decay microorganisms. Journal of Agricultural and Food Chemistry 50, 6371-6377. DOI: 10.1021/jf020484d
Van Gundy, S.D. (1985). Ecology of Meloidogyne spp. – emphasis on environmental factors affecting survival and pathogenicity. In: Sasser, J.N. & Carter, C.C. (Eds). An advanced treatise on Meloidogyne. Raleigh, NC, North Carolina State University Graphics, pp. 177-182.
von Mende, N., Nobre, M.J.G. & Perry, R.N. (1998). Host finding, invasion and feeding. In: Sharma, S.B. (Ed.). The cyst nematodes. Dordrecht, The Netherlands, Springer, pp. 217-238.
Wright, D.J., Roberts, I.T.J. & Evans, S.G. (1989). Effect of the nematicide oxamyl on lipid utilization and infectivity in Globodera rostochiensis. Parasitology 98, 151-154. DOI: 10.1017/S0031182000059795
Yu, X., Zhao, W., Ma, J., Fu, X. & Zhao, Z.J. (2011). Beneficial and harmful effects of alcohol exposure on Caenorhabditis elegans worms. Biochemical and Biophysical Research Communications 412, 757-762. DOI: 10.1016/j.bbrc.2011.08.053
Yuen, C.M.C., Paton, J.E., Hanawati, R. & Shen, L.O. (1995). Effect of ethanol, acetaldehyde and ethyl formate on the growth of Penicillium italicum and P. digitatum on oranges. Journal of Horticultural Science 70, 81-84. DOI: 10.1080/14620316.1995.11515276
Zunke, U. & Eisenback, J.D. (1998). Morphology and ultrastructure. In: Sharma, S.B. (Ed.). The cyst nematodes. Dordrecht, The Netherlands, Springer, pp. 31-56.
The cyst nematode, Heterodera glycines, is a major pathogen of soybean in tropical regions, which demands novel sustainable management practices. In this work, the use of ethanol against H. glycines was evaluated as both a solution and a fumigant. On second-stage juveniles (J2) of H. glycines, ethanol at low concentration was more effective by direct dipping than by only fumigating the J2. Hatching was significantly reduced by direct dipping in ethanol solutions. Fumigation of H. glycines-infested soil with ethanol reduced infectivity by almost 100% and the number of eggs by about 67% at ethanol concentrations of 48% and 72%, respectively. Only the ethanol at 48% concentration significantly reduced the J2 lipid content, while J2 infectivity and the number of eggs were reduced by dipping at 6% ethanol. The J2 were internally altered by the ethanol solutions. Therefore, ethanol is toxic to H. glycines at low concentrations and affects its pathogenic behaviour rather than simply reducing the lipids.