In vitro bioassays to determine the effect of Bacillus soli filtrates on the paralysis of Meloidogyne incognita second-stage juveniles

In: Nematology

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • AbbasiM.AhmedN.ZakiM.ShuakatS. & KhanD. (2014). Potential of Bacillus species against Meloidogyne javanica parasitizing eggplant (Solanum melongena L.) and induced biochemical changes. Plant and Soil 375159-173. DOI: 10.1007/s11104-013-1931-6

    • Search Google Scholar
    • Export Citation
  • AbbottW.S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18265-267.

  • ArthursS. & DaraS.K. (2019). Microbial biopesticides for invertebrate pests and their markets in the United States. Journal of Invertebrate Pathology 16513-21. DOI: 10.1016/j.jip.2018.01.008

    • Search Google Scholar
    • Export Citation
  • DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen) (2010). Nutrient agar or broth with NaCl. Available online at https://www.dsmz.de/microorganisms/medium/pdf/DSMZ_Medium101.pdf (accessed 15 January 2018).

  • ElohK.DemurtasM.DeplanoA.Ngoutane MfopaA.MurgiaA.MaxiaA.OnnisV. & CaboniP. (2015). In vitro nematicidal activity of aryl hydrazones and comparative GC-MS metabolomics analysis. Journal of Agricultural and Food Chemistry 639970-9976. DOI: 10.1021/acs.jafc.5b04815

    • Search Google Scholar
    • Export Citation
  • EngelbrechtG. (2019). Metabolite profiling of Bacillus species with nematicidal activity. M.Sc. thesis, North-West University, Potchefstroom, South Africa.

  • EngelbrechtG.HorakI.Jansen van RensburgP.J. & ClaassensS. (2018). Bacillus-based bionematicides: development, modes of action and commercialisation. Biocontrol Science and Technology 28629-653. DOI: 10.1080/09583157.2018.1469000

    • Search Google Scholar
    • Export Citation
  • FourieH.Mc DonaldA.H.MothataT.S.NtidiK.N. & De WaeleD. (2012). Indications of variation in host suitability to root-knot nematode populations in commercial tomato varieties. African Journal of Agricultural Research 72344-2352.

    • Search Google Scholar
    • Export Citation
  • FourieH.Van AardtW.J.TiedtL.R. & VenterC. (2014). Investigating the effects of Cropguard® on the motility, ultrastructure and respiration of two Meloidogyne species. Nematropica 4485-92.

    • Search Google Scholar
    • Export Citation
  • GiannakouI.O.KarpouzasD.G. & Prophetou-AthanasiadouD. (2004). A novel non-chemical nematicide for the control of root-knot nematodes. Applied Soil Ecology 2669-79. DOI: 10.1016/j.apsoil.2003.09.002

    • Search Google Scholar
    • Export Citation
  • GoodacreR.EllisD.HollywoodK.TrivediD. & MuhamadaliH. (2017). Laboratory guide for metabolomics experiments. Available online at http://www.biospec.net/wordpress/wp-content/uploads/Metabolomics-laboratory-handbook.pdf (accessed 20 September 2017).

  • HaegemanA.MantelinS.JonesJ.T. & GheysenG. (2012). Functional roles of effectors of plant-parasitic nematodes. Gene 49219-31. DOI: 10.1016/j.gene.2011.10.040

    • Search Google Scholar
    • Export Citation
  • HeyrmanJ.VanparysB.LoganN.A.BalcaenA.Rodríguez-DíazM.FelskeA. & De VosP. (2004). Bacillus novalis sp. nov., Bacillus vireti sp. nov., Bacillus soli sp. nov., Bacillus bataviensis sp. nov. and Bacillus drentensis sp. nov., from the Drentse A grasslands. International Journal of Systematic and Evolutionary Microbiology 5447-57. DOI: 10.1099/ijs.0.02723-0

    • Search Google Scholar
    • Export Citation
  • HorakI.EngelbrechtG.Jansen van RensburgP.J. & ClaassensS. (2019). Microbial metabolomics: essential definitions and the importance of cultivation conditions for utilizing Bacillus species as bionematicides. Journal of Applied Microbiology 127326-343. DOI: 10.1111/jam.14218

    • Search Google Scholar
    • Export Citation
  • Jansen-GirganC.ClaassensS. & FourieH. (2016). In vitro evaluations to determine the effect of Bacillus firmus strains on the motility of Meloidogyne incognita second-stage juveniles. Tropical Plant Pathology 41320-324. DOI: 10.1007/s40858-016-0100-x

    • Search Google Scholar
    • Export Citation
  • JonesJ.T.HaegemanA.DanchinE.G.J.GaurH.S.HelderJ.JonesM.G.K.KikuchiT.Manzanilla-LópezR.Palomares-RiusJ.E.WesemaelW.M.L. et al. (2013). Top 10 plant-parasitic nematodes in molecular plant pathology. Molecular Plant Pathology 14946-961. DOI: 10.1111/mpp.12057

    • Search Google Scholar
    • Export Citation
  • LeeY.S. & KimK.Y. (2016). Antagonistic potential of Bacillus pumilus L1 against root-knot nematode, Meloidogyne arenaria. Journal of Phytopathology 16429-39. DOI: 10.1111/jph.12421

    • Search Google Scholar
    • Export Citation
  • LiJ.ZouC.XuJ.JiX.NiuX.YangJ.HuangX. & ZhangK.-Q. (2015). Molecular mechanisms of nematode-nematophagous microbe interactions: basis for biological control of plant-parasitic nematodes. Annual Review of Phytopathology 5367-95. DOI: 10.1146/annurev-phyto-080614-120336

    • Search Google Scholar
    • Export Citation
  • MendozaA.R.KiewnickS. & SikoraR.A. (2008). In vitro activity of Bacillus firmus against the burrowing nematode Radopholus similis, the root-knot nematode Meloidogyne incognita and the stem nematode Ditylenchus dipsaci. Biocontrol Science & Technology 18377-389. DOI: 10.1080/09583150801952143

    • Search Google Scholar
    • Export Citation
  • NazI.SaifullahPalomares-RiusJ.E.KhanS.M.AliS.AhmadM.AliA. & KhanA. (2015). Control of southern root knot nematode Meloidogyne incognita (Kofoid and White) Chitwood on tomato using green manure of Fumaria parviflora Lam (Fumariaceae). Crop Protection 67121-129. DOI: 10.1016/j.cropro.2014.10.005

    • Search Google Scholar
    • Export Citation
  • RiekertH.F. (1995). An adapted method for extraction of root-knot nematode eggs from maize root samples. African Plant Protection 141-43.

    • Search Google Scholar
    • Export Citation
  • TerefeM.TeferaT. & SakhujaP.K. (2009). Effect of a formulation of Bacillus firmus on root-knot nematode Meloidogyne incognita infestation and the growth of tomato plants in the greenhouse and nursery. Journal of Invertebrate Pathology 10094-99. DOI: 10.1016/j.jip.2008.11.004

    • Search Google Scholar
    • Export Citation
  • VisagieM.MienieC.M.S.MaraisM.DaneelM.KarssenG. & FourieH. (2018). Identification of Meloidogyne spp. associated with agri- and horticultural crops in South Africa. Nematology 20397-401. DOI: 10.1163/15685411-00003160

    • Search Google Scholar
    • Export Citation
  • XiangN.LawrenceK.S.KloepperJ.W.DonaldP.A.McInroyJ.A. & LawrenceG.W. (2016). Biological control of Meloidogyne incognita by spore-forming plant growth-promoting rhizobacteria on cotton. Plant Disease 101774-784. DOI: 10.1094/PDIS-09-16-1369-RE

    • Search Google Scholar
    • Export Citation
  • XiongJ.ZhouQ.LuoH.XiaL.LiL.SunM. & YuZ. (2015). Systemic nematicidal activity and biocontrol efficacy of Bacillus firmus against the root-knot nematode Meloidogyne incognita. World Journal of Microbiology and Biotechnology 31661-667. DOI: 10.1007/s11274-015-1820-7

    • Search Google Scholar
    • Export Citation

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 49 49 31
Full Text Views 3 3 1
PDF Downloads 1 1 1