Do you want to stay informed about this journal? Click the buttons to subscribe to our alerts.
Brazil has one of the largest varieties of aquatic ecosystems and rich freshwater biodiversity, but these components have constantly been damaged by the expansion of unsustainable activities. Free-living nematodes are an abundant and ubiquitous component of continental benthic communities, occurring in all freshwater habitats, including extreme environments. Despite this, hardly any studies have examined the generic composition of nematodes in different latitudes and the geographic overlap of assemblages. We provide data on nematode genera from six regions in Brazil, over a north-south gradient spanning about 4000 km, encompassing rivers, coastal lakes, and reservoirs with different levels of human impact. Interpolation/extrapolation curves were generated and the zeta diversity was used to assess the overlap of nematode assemblages. Freshwater nematode assemblages comprised 54 families and 132 genera. Mononchidae, Monhysteridae, Chromadoridae, Tobrilidae and Dorylaimidae were the most diverse families. Differences in diversity and high turnover of genera were found among regions, probably related to stochastic processes. Mononchus was the only widely distributed genus. Our results revealed a high biodiversity of free-living freshwater nematodes among the regions. The limited spatial coverage of the data reveals an enormous knowledge gap in a country with 12% of the world’s freshwater resources. The lack of spatial patterns, e.g., latitudinal variation, suggests that freshwater nematode assemblages are primarily structured by the intrinsic properties of habitats. This reinforces the uniqueness of freshwater ecosystems and suggests that the nematode assemblages may be sensitive to environmental disturbances, since the limited distributions of taxa may lead to lower resilience.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Altherr, E. (1972). Contribution à la connaissance des Nématodes de l’estuaire de l’Amazone. Amazoniana III(II), 141-174.
Altherr, E. (1977). Contribution à la connaissance des Nématodes de l’estuaire de l’Amazone (2 me partie). Amazoniana VI(II), 145-159.
Alvares, C.A., Stape, J.L., Sentelhas, P.C., Gonçalves, J.L.M. & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22, 711-728. DOI: 10.1127/0941-2948/2013/0507
Alves, A.S., Adão, H., Ferrero, T.J., Marques, J.C., Costa, M.J. & Patrício, J. (2013). Benthic meiofauna as indicator of ecological changes in estuarine ecosystems: the use of nematodes in ecological quality assessment. Ecological Indicators 24, 462-475. DOI: 10.1016/j.ecolind.2012.07.013
Andrássy, I. (1985). A taxonomic survey of the family Anatonchidae (Nematoda). Opuscula Zoologica 21, 9-22.
Andrássy, I. (2010). Two new nematode species of the subfamily Brittonematinae (Dorylaimida: Actinolaimidae). Opuscula Zoologica 41, 175-190.
Barros, F.L.O., Silva, M.C., Vieira, A.A. & Castro, F.J.V. (2020). Freshwater nematofauna (Nematoda) in a semi-arid region. Revista Nordestina de Zoologia 12, 1-14.
Bezerra, T.N., Decraemer, W., Eisendle-Flöckner, U., Hodda, M., Holovachov, O., Leduc, D., Mokievsky, V., Peña-Santiago, R., Sharma, J., Smol, N. et al. (2020). Nemys: world database of nematodes. Accessed at http://nemys.ugent.be on 2020-06-09. DOI: 10.14284/366
Calizza, E., Costantini, M.L. & Rossi, L. (2015). Effect of multiple disturbances on food web vulnerability to biodiversity loss in detritus-based systems. Ecosphere 6, 1-20. DOI: 10.1890/ES14-00489.1
Chao, A. & Jost, L. (2012). Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93, 2533-2547. DOI: 10.1890/11-1952.1
Chao, A., Gotelli, N.J., Hsieh, T.C., Sander, E.L., Ma, K.H., Colwell, R.K. & Ellison, A.M. (2014). Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs 84, 45-67. DOI: 10.1890/13-0133.1
Cobb, N.A. (1920). One hundred new nemas (type species of 100 new genera). Contributions to a Science of Nematology 9, 217-343.
Colwell, R.K., Mao, C.X. & Chang, J. (2004). Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology 85, 2717-2727. DOI: 10.1890/03-0557
Coomans, A. & Eyualem-Abebe (2006). Order Monhysterida. In: Eyualem-Abebe, Andrássy, I. & Traunspurger, W. (Eds). Freshwater nematodes: ecology and taxonomy. Wallingford, UK, CABI Publishing, pp. 574-603.
De Grisse, A.T. (1969). Redescription ou modifications de quelques techniques utilisées dans l’étude des nématodes phytoparasitaires. Mededelingen van de Rijksfaculteit Landbouwwetenschappen te Gent 34, 351-369.
Decraemer, W. & Smol, N. (2006). Orders Chromadorida, Desmodorida and Desmoscolecida. In: Eyualem-Abebe, Andrássy, I. & Traunspurger, W. (Eds). Freshwater nematodes: ecology and taxonomy. Wallingford, UK, CABI Publishing, pp. 497-573.
Dudgeon, D. (2014). Threats to freshwater biodiversity in a changing world. In: Freedman, B. (Ed.). Handbook of global environmental change. Dordrecht, The Netherlands, Springer Science+Business Media.
Dudgeon, D., Arthington, A.H., Gessner, M.O., Kawabata, Z.-I., Knowler, D.J., Lévêque, C., Naiman, R.J., Prieur-Richard, A.-H., Soto, D., Stiassny, M.L.J. et al. (2006). Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81, 163-182. DOI: 10.1017/S1464793105006950
Dümmer, B., Ristau, K. & Traunspurger, W. (2016). Varying patterns on varying scales: a metacommunity analysis of nematodes in European lakes. PLoS ONE 11, e0151866. DOI: 10.1371/journal.pone.0151866
Eyualem-Abebe, Andrássy, I. & Traunspurger, W. (Eds). (2006). Freshwater nematodes: ecology and taxonomy. Wallingford, UK, CABI Publishing.
Eyualem Abebe, Decraemer, W. & De Ley, P. (2008). Global diversity of nematodes (Nematoda) in freshwater. Hydrobiologia 595, 67-78. DOI: 10.1007/s10750-007-9005-5
Flach, P.Z.S., Ozorio, C.P. & Melo, A.S. (2012). Alpha and beta components of diversity of freshwater nematodes at different spatial scales in subtropical coastal lakes. Fundamental and Applied Limnology 180, 249-258. DOI: 10.1127/1863-9135/2012/0182
Fonseca, C.R. & Ganade, G. (2001). Species functional redundancy, random extinctions, and the stability of ecosystems. Journal of Ecology 89, 118-125. DOI: 10.1046/j.1365-2745.2001.00528.x
Forster, S.J. (1998). Osmotic stress tolerance and osmoregulation of intertidal and subtidal nematodes. Journal of Experimental Marine Biology and Ecology 224, 109-125. DOI: 10.1016/S0022-0981(97)00192-5
Gansfort, B., Fontaneto, D. & Zhai, M. (2020). Meiofauna as a model to test paradigms of ecological metacommunity theory. Hydrobiologia 847, 2645-2663. DOI: 10.1007/s10750-020-04185-2
Gozlan, R.E., Karimov, B.K., Zadereev, E., Kuznetsova, D. & Brucet, S. (2019). Status, trends, and future dynamics of freshwater ecosystems in Europe and Central Asia. Inland Waters 9, 78-94. DOI: 10.1080/20442041.2018.1510271
Heip, C., Vincx, M. & Vranken, G. (1985). The ecology of marine nematodes. Oceanography and Marine Biology: an Annual Review 23, 399-483.
Hodda, M. (2006). Nematodes in lotic systems – freshwater. In: Eyualem-Abebe, Andrássy, I. & Traunspurger, W. (Eds). Freshwater nematodes: ecology and taxonomy. Wallingford, UK, CABI Publishing, pp. 163-178.
Hsieh, T.C., Ma, K.H. & Chao, A. (2020). iNEXT: iNterpolation and EXTrapolation for species diversity. R package version 2.0.20. https://rdrr.io/cran/iNEXT/.
Hui, C. & McGeoch, M.A. (2014). Zeta diversity as a concept and metric that unifies incidence-based biodiversity patterns. The American Naturalist 184, 684-694. DOI: 10.1086/678125
Jackson, M.C., Weyl, O.L.F., Altermatt, F., Durance, I., Friberg, N., Dumbrell, A.J., Piggott, J.J., Tiegs, S.D., Tockner, K., Krug, C.B. et al. (2016). Recommendations for the next generation of global freshwater biological monitoring tools. Advances in Ecological Research 55, 615-636. DOI: 10.1016/bs.aecr.2016.08.008
Latombe, G., McGeoch, M.A., Nipperess, D.A. & Hui, C. (2018). zetadiv: functions to compute compositional turnover using zeta diversity. R package version 1.1.1. Available online at https://CRAN.R-project.org/package=zetadiv.
Leibold, M.A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J.M., Hoopes, M.F., Holt, R.D., Shurin, J.B., Law, R., Tilman, D. et al. (2004). The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7, 601-613. DOI: 10.1111/j.1461-0248.2004.00608.x
Lévêque, C., Balian, E.V. & Martens, K. (2005). An assessment of animal species diversity in continental waters. Hydrobiologia 542, 39-67. DOI: 10.1007/s10750-004-5522-7
Majdi, M. & Traunspurger, W. (2015). Free-living nematodes in the freshwater food web: a review. Journal of Nematology 47, 28-44. PMID: 25861114
Majdi, M., Threis, I. & Traunspurger, W. (2016). It’s the little things that count: meiofaunal density and production in the sediment of two headwater streams. Limnology and Oceanography 62, 151-163. DOI: 10.1002/lno.10382
McGeoch, M.A., Latombe, G., Andrew, N.R., Nakagawa, S., Nipperess, D.A., Roige, M., Marzinelli, E.M., Campbell, A.H., Vergés, A., Thomas, T. et al. (2019). Measuring continuous compositional change using decline and decay in zeta diversity. Ecology 100(11), 1-18. DOI: 10.1002/ecy.2832
Mello, K., Taniwaki, R.H., Paula, F.R., Valente, R.A., Randhir, T.O., Macedo, D.R., Leal, C.G., Rodrigues, C.B. & Hughes, R.M. (2020). Multiscale land use impacts on water quality: assessment, planning, and future perspectives in Brazil. Journal of Environmental Management 270, 110879. DOI: 10.1016/j.jenvman.2020.110879
Meyl, A.H. (1956). Beiträge zur freilebenden Nematodenfauna Brasiliens, I. Acht neue Nematodenarten der Überfamilie Dorylaimoidea. Nematologica 1, 311-325. DOI: 10.1163/187529256X00320
Meyl, A.H. (1957). Beiträge zur freilebenden Nematodenfauna Brasiliens. II. Weitere neue oder wenig bekannte Nematodenarten. Kieler Meeresforschungen 8, 125-133.
Moens, T. & Vincx, M. (2000). Temperature, salinity and food thresholds in two brackish-water bacterivorous nematode species: assessing niches from food absorption and respiration experiments. Journal of Experimental Marine Biology and Ecology 243, 137-154. DOI: 10.1016/S0022-0981(99)00114-8
Netto, S.A. & Fonseca, G. (2017). Regime shifts in coastal lagoons: evidence from free-living marine nematodes. PLoS ONE 12, e0172366. DOI: 10.1371/journal.pone.0172366
Nkem, J.N., Virginia, R.A., Barrett, J.E., Wall, D.H. & Li, G. (2006). Salt tolerance and survival thresholds for two species of Antarctic soil nematodes. Polar Biology 29, 643-651. DOI: 10.1007/s00300-005-0101-6
Nogueira, C., Buckup, P.A., Menezes, N.A., Oyakawa, O.T., Kasecker, T.P., Ramos-Neto, M.B. & Silva, J.M.C. (2010). Restricted-range fishes and the conservation of Brazilian freshwaters. PLoS ONE 5(6), e11390. DOI: 10.1371/journal.pone.0011390
Portnova, D.A., Garlitska, L.A., Udalov, A.A. & Kondar, D.V. (2017). Meiobenthos and nematode community in Yenisei Bay and adjacent parts of the Kara Sea shelf. Oceanology 57, 130-143. DOI: 10.1134/S0001437017010155
Ptatscheck, C. & Traunspurger, W. (2020). The ability to get everywhere: dispersal modes of free-living, aquatic nematodes. Hydrobiologia 847, 3519-3547. DOI: 10.1007/s10750-020-04373-0
Ptatscheck, C., Gehner, S. & Traunspurger, W. (2020). Should we redefine meiofaunal organisms? The impact of mesh size on collection of meiofauna with special regard to nematodes. Aquatic Ecology 54, 1135-1143. DOI: 10.1007/s10452-020-09798-2
Riemann, F. (1972). Kinonchulus sattleri n. g. n. sp. (Enoplida: Tripyloidea), an aberrant free-living nematode from the Lower Amazonas. Veröffentlichungen des Instituts für Meeresforschungen Bremerhaven 13, 317-326.
Ristou, K., Steinfartz, S. & Traunspurger, W. (2013). First evidence of cryptic species diversity and significant population structure in a widespread freshwater nematode morphospecies (Tobrilus gracilis). Molecular Ecology 27, 4562-4575. DOI: 10.1111/mec.12414
Simons, A.L., Mazor, R., Stein, E.D. & Nuzhdin, S. (2019). Using alpha, beta, and zeta diversity in describing the health of stream-based benthic macroinvertebrate communities. Ecological Applications 29, e01896. DOI: 10.1002/eap.1896
Smith, F. & Brown, A.V. (2006). Effects of flow on meiofauna colonization in artificial streams and reference sites within the Illinois River, Arkansas. Hydrobiologia 571, 169-180. DOI: 10.1007/s10750-006-0237-6
Somerfield, P.J., Warwick, R.M. & Moens, T. (2005). Meiofauna techniques. In: Eleftheriou, A. & McIntyre, A.D. (Eds). Methods for the study of marine benthos. Oxford, UK, Blackwell Science Ltd, pp. 229-272.
Stead, T.K., Schmid-Araya, J.M. & Hildrew, A.G. (2005). Secondary production of a stream metazoan community: does the meiofauna make a difference? Limnology and Oceanography 50, 398-403. DOI: 10.4319/lo.2005.50.1.0398
Steel, H., Coomans, A., Decraemer, W., Moens, T. & Bert, W. (2014). Nematodes from terrestrial, freshwater and brackish water habitats in Belgium: an updated list with special emphasis on compost nematodes. Zootaxa 3765, 143-160. DOI: 10.11646/zootaxa.3765.2.3
Strayer, D.L. & Dudgeon, D. (2010). Freshwater biodiversity conservation: recent progress and future challenges. Journal of the North American Benthological Society 29, 344-358. DOI: 10.1899/08-171.1
Traunspurger, W. (2014). Ecology of freshwater nematodes. In: Schmidt-Rhaesa, A. (Ed.). Handbook of zoology. Gastrotricha, Cycloneuralia and Gnathifera. Vol. 2 Nematoda. Berlin, Germany, De Gruyter.
Tsalolikhin, S.Y. & Zullini, A. (2019). Marine and freshwater taxa: some numerical trends. Natural History Sciences – Atti della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano 6, 11-27. DOI: 10.4081/nhs.2019.417
Warwick, R.M. (2018). The contrasting histories of marine and freshwater meiobenthic research – a result of differing life histories and adaptive strategies? Journal of Experimental Marine Biology and Ecology 502, 4-11. DOI: 10.1016/j.jembe.2017.05.008
Zullini, A. (2010). Identification manual for freshwater nematode genera. Milan, Italy, Università degli Studi di Milano-Bicocca.
Zullini, A. (2014). Is a biogeography of freshwater nematodes possible? Nematology 16, 1-8. DOI: 10.1163/15685411-00002779
Zullini, A. & Semprucci, F. (2020). Morphological differences between free-living soil and freshwater nematodes in relation to their environments. Nematology 22, 125-132. DOI: 10.1163/15685411-00003330
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 377 | 159 | 32 |
Full Text Views | 26 | 12 | 0 |
PDF Views & Downloads | 59 | 25 | 0 |
Brazil has one of the largest varieties of aquatic ecosystems and rich freshwater biodiversity, but these components have constantly been damaged by the expansion of unsustainable activities. Free-living nematodes are an abundant and ubiquitous component of continental benthic communities, occurring in all freshwater habitats, including extreme environments. Despite this, hardly any studies have examined the generic composition of nematodes in different latitudes and the geographic overlap of assemblages. We provide data on nematode genera from six regions in Brazil, over a north-south gradient spanning about 4000 km, encompassing rivers, coastal lakes, and reservoirs with different levels of human impact. Interpolation/extrapolation curves were generated and the zeta diversity was used to assess the overlap of nematode assemblages. Freshwater nematode assemblages comprised 54 families and 132 genera. Mononchidae, Monhysteridae, Chromadoridae, Tobrilidae and Dorylaimidae were the most diverse families. Differences in diversity and high turnover of genera were found among regions, probably related to stochastic processes. Mononchus was the only widely distributed genus. Our results revealed a high biodiversity of free-living freshwater nematodes among the regions. The limited spatial coverage of the data reveals an enormous knowledge gap in a country with 12% of the world’s freshwater resources. The lack of spatial patterns, e.g., latitudinal variation, suggests that freshwater nematode assemblages are primarily structured by the intrinsic properties of habitats. This reinforces the uniqueness of freshwater ecosystems and suggests that the nematode assemblages may be sensitive to environmental disturbances, since the limited distributions of taxa may lead to lower resilience.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 377 | 159 | 32 |
Full Text Views | 26 | 12 | 0 |
PDF Views & Downloads | 59 | 25 | 0 |