In this work, we found that tomato and guava plants infected with Meloidogyne enterolobii showed different Fourier-transformed infrared spectral patterns compared to non-infected plants. Additionally, by using two-dimensional correlation spectroscopy (2D-COS) we were able to track and explain those spectral differences according to the progression of the nematode infection in the plants. In general, 2D-COS reveals the same chain of changes in both tomatoes and guavas when under nematode infection. There is a decrease in bands representing amino acids and proteins, fatty acids and lipids are down-regulated, and sugars and total phenols increase in leaves of infected plants. The application of this technique provides useful information on the metabolic and biochemical changes in plant tissues when diseased in a rapid manner. This technique could be used in the future, combined with other methods, to improve field diagnosis, quality control, or to reduce analytical time for biochemical purposes.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Ahmed, N., Abbasi, M.W., Shaukat, S.S. & Zaki, M.J. (2009). Physiological changes in leaves of mungbean plants infected with Meloidogyne javanica. Phytopathologia Mediterranea 48, 262-268. https://oajournals.fupress.net/index.php/pm/article/view/5286/5284
Almeida, A.M., Gomes, V.M. & Souza, R.M. (2011). Greenhouse and field assessment of rhizobacteria to control guava decline. Bragantia 70, 837-842. DOI: 10.1590/S0006-87052011000400016
Baker, M.J., Trevisan, J., Bassan, P., Bhargava, R., Butler, H.J., Dorling, K.M., Fielden, P.R., Fogarty, S.W., Fullwood, N.J., Heys, K.A. et al. (2014). Using Fourier transform IR spectroscopy to analyze biological materials. Nature Protocols 9, 1771-1791. DOI: 10.1038/nprot.2014.110
Barth, A. (2007). Infrared spectroscopy of proteins. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1767, 1073-1101. DOI: 10.1016/j.bbabio.2007.06.004
Brito, J.A., Stanley, J.D., Kaur, R., Cetintas, R., Di Vito, M., Thies, J.A. & Dickson, D.W. (2007). Effects of the M i − 1, N and tabasco genes on infection and reproduction of Meloidogyne mayaguensis on tomato and pepper genotypes. Journal of Nematology 39, 327-332.
Butler, H.J., McAinsh, M.R., Adams, S. & Martin, F.L. (2015). Application of vibrational spectroscopy techniques to non-destructively monitor plant health and development. Analytical Methods 7, 4059-4070. DOI: 10.1039/C5AY00377F
Carneiro, R.M.D.G., de Freitas, V.M., Mattos, J.K., Castro, J.M.C., Gomes, C.B. & Carneiro, R.G. (2012). Major guava nematodes and control prospects using resistance on Psidium spp. and non-host crops. Acta Horticulturae 959, 41-49.
Castagnone-Sereno, P. (2012). Meloidogyne enterolobii (= M. mayaguensis): profile of an emerging, highly pathogenic, root-knot nematode species. Nematology 14, 133-138. DOI: 10.1163/156854111X601650
de Farias Viégas Aquije, G.M., Zorzal, P.B., Buss, D.S., Ventura, J.A., Fernandes, P.M.B. & Fernandes, A.A.R. (2010). Cell wall alterations in the leaves of fusariosis-resistant and susceptible pineapple cultivars. Plant Cell Reports 29, 1109-1117. DOI: 10.1007/s00299-010-0894-9
Dhakshinamoorthy, S., Mariama, K., Elsen, A. & De Waele, D. (2014). Phenols and lignin are involved in the defence response of banana (Musa) plants to Radopholus similis infection. Nematology 16, 565-576. https://doi.org/10.1163/15685411-00002788
Dokken, K.M. & Davis, L.C. (2007). Infrared imaging of sunflower and maize root anatomy. Journal of Agricultural and Food Chemistry 55, 10517-10530. DOI: 10.1021/jf072052e
Dučić, T., Thieme, J. & Polle, A. (2012). Phosphorus compartmentalization on the cellular level of Douglas fir root as affected by Mn toxicity: a synchrotron-based FTIR approach. Journal of Spectroscopy 27, 265-272. DOI: 10.1155/2012/374039
Eloh, K., Sasanelli, N., Maxia, A. & Caboni, P. (2016). Untargeted metabolomics of tomato plants after root-knot nematode infestation. Journal of Agricultural and Food Chemistry 64, 5963-5968. DOI: 10.1021/acs.jafc.6b02181
Gandolfo, D.S., Mortimer, H., Woodhall, J.W. & Boonham, N. (2016). Fourier transform infra-red spectroscopy using an attenuated total reflection probe to distinguish between Japanese larch, pine and citrus plants in healthy and diseased states. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 163, 181-188. DOI: 10.1016/j.saa.2016.03.022
Ghaderi, R. & Karssen, G. (2020). An updated checklist of Meloidogyne Göldi, 1887 species, with a diagnostic compendium for second-stage juveniles and males. Journal of Crop Protection 9, 183-193.
Gunasekaran, D., Bunawan, H., Ismail, I. & Noor, N.M. (2018). Data on Fourier transform-infrared of Cosmos caudatus Kunth. tissues analyzed with chemometric analysis. Data in Brief 19, 1423-1427. DOI: 10.1016/j.dib.2018.06.025
Heraud, P., Caine, S., Sanson, G., Gleadow, R., Wood, B.R. & McNaughton, D. (2007). Focal plane array infrared imaging: a new way to analyse leaf tissue. New Phytologist 173, 216-225. DOI: 10.1111/j.1469-8137.2006.01881.x
Heredia-Guerrero, J.A., Benítez, J.J., Domínguez, E., Bayer, I.S., Cingolani, R., Athanassiou, A. & Heredia, A. (2014). Infrared and Raman spectroscopic features of plant cuticles: a review. Frontiers in Plant Science 5, 305. DOI: 10.3389/fpls.2014.00305
Hillnhütter, C., Mahlein, A.K., Sikora, R.A. & Oerke, E.C. (2011). Remote sensing to detect plant stress induced by Heterodera schachtii and Rhizoctonia solani in sugar beet fields. Field Crops Research 122, 70-77. DOI: 10.1016/j.fcr.2011.02.007
Hussey, R. & Barker, K. (1973). Comparison of methods for collecting inocula of Meloidogyne spp., including a new technique. Plant Disease Reporter 57, 1025-1028.
Joalland, S., Screpanti, C., Varella, H.V., Reuther, M., Schwind, M., Lang, C., Walter, A. & Liebisch, F. (2018). Aerial and ground based sensing of tolerance to beet cyst nematode in sugar beet. Remote Sensing 10, 787. DOI: 10.3390/rs10050787
Jones, J.T., Haegeman, A., Danchin, E.G.J., Gaur, H.S., Helder, J., Jones, M.G.K., Kikuchi, T., Manzanilla-López, R., Palomares-Rius, J.E., Wesemael, W.M.L. et al. (2013). Top 10 plant-parasitic nematodes in molecular plant pathology. Molecular Plant Pathology 14, 946-961. DOI: 10.1111/mpp.12057
Jung, Y.M., Shin, H.S., Kim, S.B. & Noda, I. (2002). New approach to generalized two-dimensional correlation spectroscopy. 1: combination of principal component analysis and two-dimensional correlation spectroscopy. Applied Spectroscopy 56, 1562-1567. DOI: 10.1366/000370202321116020
Khairudin, K., Sukiran, N.A., Goh, H.-H., Baharum, S.N. & Noor, N.M. (2014). Direct discrimination of different plant populations and study on temperature effects by Fourier transform infrared spectroscopy. Metabolomics 10, 203-211. DOI: 10.1007/s11306-013-0570-5
Kihika, R., Murungi, L.K., Coyne, D., Ng’ang’a, M., Hassanali, A., Teal, P.E.A. & Torto, B. (2017). Parasitic nematode Meloidogyne incognita interactions with different Capsicum annum cultivars reveal the chemical constituents modulating root herbivory. Scientific Report 7, 2903. DOI: 10.1038/s41598-017-02379-8
Kumar, S., Lahlali, R., Liu, X. & Karunakaran, C. (2016). Infrared spectroscopy combined with imaging: a new developing analytical tool in health and plant science. Applied Spectroscopy Reviews 51, 466-483. DOI: 10.1080/05704928.2016.1157808
Largo-Gosens, A., Hernández-Altamirano, M., García-Calvo, L., Alonso-Simón, A., Álvarez, J. & Acebes, J.L. (2014). Fourier transform mid infrared spectroscopy applications for monitoring the structural plasticity of plant cell walls. Frontiers in Plant Science 5, 303. DOI: 10.3389/fpls.2014.00303
Leung Tang, P., Alqassim, M., Nic Daéid, N., Berlouis, L. & Seelenbinder, J. (2016). Nondestructive handheld Fourier transform infrared (FT-IR) analysis of spectroscopic changes and multivariate modeling of thermally degraded plain Portland cement concrete and its slag and fly ash-based analogs. Applied Spectroscopy 70, 923-931. DOI: 10.1177/0003702816638306
Lobna, H., Aymen, E.M., Hajer, R., Naima, M.-B. & Najet, H.-R. (2017). Biochemical and plant nutrient alterations induced by Meloidogyne javanica and Fusarium oxysporum f. sp. radicis lycopersici co-infection on tomato cultivars with differing level of resistance to M. javanica. European Journal of Plant Pathology 148, 463-472. DOI: 10.1007/s10658-016-1104-6
Mandal, S.M., Chakraborty, D. & Dey, S. (2010). Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signaling & Behavior 5, 359-368. DOI: 10.4161/psb.5.4.10871
Moens, M., Perry, R.N. & Starr, J.L. (2009). Meloidogyne species – a diverse group of novel and important plant parasites. In: Perry, R.N., Moens, M. & Starr, J.L. (Eds). Root-knot nematodes. Wallingford, UK, CAB International, pp. 1-17.
Nicol, J.M., Turner, S.J., Coyne, D.L., den Nijs, L., Hockland, S. & Tahna Maafi, Z. (2011). Current nematode threats to world agriculture. In: Jones, J., Gheysen, G. & Fenoll, C. (Eds). Genomics and molecular genetics of plant-nematode interactions. Dordrecht, The Netherlands, Springer, pp. 21-43.
Noda, I. (1993). Generalized two-dimensional correlation method applicable to infrared, Raman, and other types of spectroscopy. Applied Spectroscopy 47, 1329-1336.
Noda, I. (2017). Vibrational two-dimensional correlation spectroscopy (2DCOS) study of proteins. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 187, 119-129. DOI: 10.1016/j.saa.2017.06.034
Olale, K., Walyambillah, W., Mohammed, S.A., Sila, A. & Shepherd, K. (2017). Application of DRIFT-FTIR spectroscopy for quantitative prediction of simple sugars in two local and two Floridian mango (Mangifera indica L.) cultivars in Kenya. Journal of Analytical Science and Technology 8, 21. DOI: 10.1186/s40543-017-0130-0
Park, Y., Noda, I. & Jung, Y.M. (2016). Novel developments and applications of two-dimensional correlation spectroscopy. Journal of Molecular Structure 1124, 11-28. DOI: 10.1016/j.molstruc.2016.01.028
Park, Y., Jin, S., Noda, I. & Jung, Y.M. (2020). Emerging developments in two-dimensional correlation spectroscopy (2D-COS). Journal of Molecular Structure 1217, 128405. DOI: 10.1016/j.molstruc.2020.128405
R Development Core Team (2016). R: a language and environment for statistical computing. Vienna, Austria, R Foundation for Statistical Computing. ISBN 3-900051-07-0, http://www.R-project.org/.
Rammah, A. & Hirschmann, H. (1988). Meloidogyne mayaguensis n. sp. (Meloidogynidae), a root-knot nematode from Puerto Rico. Journal of Nematology 20, 58-69.
Raskin, I. (1992). Role of salicylic acid in plants. Annual Review of Plant Physiology and Plant Molecular Biology 43, 439-463. DOI: 10.1146/annurev.pp.43.060192.002255
Roy, I.G. (2018). On the Hilbert-Noda transformation of geophysical time-series. Geophysical Journal International 215, 2198-2205. DOI: 10.1093/gji/ggy402
San-Blas, E., Guerra, M., Portillo, E., Esteves, I., Cubillán, N. & Alvarado, Y. (2011). ATR/FTIR characterization of Steinernema glaseri and Heterorhabditis indica. Vibrational Spectroscopy 57, 220-228. DOI: 10.1016/j.vibspec.2011.07.008
San-Blas, E., Paba, G., Cubillán, N., Portillo, E., Casassa-Padrón, A., González-González, C. & Guerra, M. (2020). The use of infrared spectroscopy and machine learning tools for detection of Meloidogyne infestations. Plant Patholology 69, 1589-1600. DOI: 10.1111/ppa.13246
Sharma, I.P. & Sharma, A.K. (2017). Physiological and biochemical changes in tomato cultivar PT-3 with dual inoculation of mycorrhiza and PGPR against root-knot nematode. Symbiosis 71, 175-183. DOI: 10.1007/s13199-016-0423-x
Singh, S., Singh, B. & Singh, A.P. (2015). Nematodes: a threat to sustainability of agriculture. Procedia Environmental Sciences 29, 215-216. DOI: 10.1016/j.proenv.2015.07.270
Thumanu, K., Sompong, M., Phansak, P., Nontapot, K. & Buensanteai, N. (2015). Use of infrared microspectroscopy to determine leaf biochemical composition of cassava in response to Bacillus subtilis CaSUT007. Journal of Plant Interactions 10, 270-279. DOI: 10.1080/17429145.2015.1059957
Tigano, M., de Siqueira, K., Castagnone-Sereno, P., Mulet, K., Queiroz, P., dos Santos, M., Teixeira, C., Almeida, M., Silva, J. & Carneiro, R. (2010). Genetic diversity of the root-knot nematode Meloidogyne enterolobii and development of a SCAR marker for this guava-damaging species. Plant Pathology 59, 1054-1061. DOI: 10.1111/j.1365-3059.2010.02350.x
Tronchet, M., Balagué, C., Kroj, T., Jouanin, L. & Roby, D. (2010). Cinnamyl alcohol dehydrogenases-C and D, key enzymes in lignin biosynthesis, play an essential role in disease resistance in Arabidopsis. Molecular Plant Pathology 11, 83-92. DOI: 10.1111/J.1364-3703.2009.00578.X
Türker-Kaya, S. & Huck, C. (2017). A review of mid-infrared and near-infrared imaging: principles, concepts and applications in plant tissue analysis. Molecules 22, 168. DOI: 10.3390/molecules22010168
Veronico, P., Paciolla, C., Pomar, F., De Leonardis, S., García-Ulloa, A. & Melillo, M.T. (2018). Changes in lignin biosynthesis and monomer composition in response to benzothiadiazole and root-knot nematode Meloidogyne incognita infection in tomato. Journal of Plant Physiology 230, 40-50. DOI: 10.1016/j.jplph.2018.07.013
Villar-Luna, E., Goméz-Rodriguez, O., Rojas-Martínez, R.I. & Zavaleta-Mejía, E. (2016). Presence of Meloidogyne enterolobii on Jalapeño pepper (Capsicum annuum L.) in Sinaloa, Mexico. Helminthologia 53, 155-160. DOI: 10.1515/helmin-2016-0001
Wang, E.L. & Bergeson, G.B. (1974). Biochemical changes in root exudate and xylem sap of tomato plants infected with Meloidogyne incognita. Journal of Nematology 6, 194-202.
Yang, B. & Eisenback, J.D. (1983). Meloidogyne enterolobii n. sp. (Meloidogynidae), a root-knot nematode parasitizing pacara earpod tree in China. Journal of Nematology 15, 381-391.
Žibrat, U., Susič, N., Knapič, M., Širca, S., Strajnar, P., Razinger, J., Vončina, A., Urek, G. & Gerič Stare, B. (2019). Pipeline for imaging, extraction, pre-processing, and processing of time-series hyperspectral data for discriminating drought stress origin in tomatoes. MethodsX 6, 399-408. DOI: 10.1016/j.mex.2019.02.022
Zinov’eva, S.V., Vasyukova, N.I. & Ozeretskovskaya, O.L. (2004). Biochemical aspects of plant interactions with phytoparasitic nematodes: a review. Applied Biochemistry and Microbiology 40, 111-119. DOI: 10.1023/B:ABIM.0000018912.93529.78
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 527 | 104 | 30 |
Full Text Views | 70 | 9 | 4 |
PDF Views & Downloads | 41 | 11 | 7 |
In this work, we found that tomato and guava plants infected with Meloidogyne enterolobii showed different Fourier-transformed infrared spectral patterns compared to non-infected plants. Additionally, by using two-dimensional correlation spectroscopy (2D-COS) we were able to track and explain those spectral differences according to the progression of the nematode infection in the plants. In general, 2D-COS reveals the same chain of changes in both tomatoes and guavas when under nematode infection. There is a decrease in bands representing amino acids and proteins, fatty acids and lipids are down-regulated, and sugars and total phenols increase in leaves of infected plants. The application of this technique provides useful information on the metabolic and biochemical changes in plant tissues when diseased in a rapid manner. This technique could be used in the future, combined with other methods, to improve field diagnosis, quality control, or to reduce analytical time for biochemical purposes.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 527 | 104 | 30 |
Full Text Views | 70 | 9 | 4 |
PDF Views & Downloads | 41 | 11 | 7 |