Dispersal is an important behaviour for nematodes. Entomopathogenic nematodes (EPN) are able to regulate plant-parasitic nematodes in the field. However, the mechanism for the interactions between two types of nematodes is not clearly known. The effects of 12 synthesised ascarosides, three EPN species (Steinernema carpocapsae All, Heterorhabditis bacteriophora H06 and H. indica LN2), and 15 symbiotic bacterial isolates from EPN on the dispersal of Meloidogyne incognita were investigated. The results revealed that M. incognita juveniles were repelled, to various degrees, by most of the tested ascarosides (especially ascr#9), three species of EPN, and by bacterial isolates (especially TT01 from H. bacteriophora TT01 and H06 from H. bacteriophora H06), compared with the controls. Ascr#9 was abundant in M. incognita juvenile-conditioned supernatant. This provides useful cues for elucidating the interaction mechanism between two nematode groups and establishing alternative techniques for the safe and effective control of root-knot nematodes.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Abad, P., Gouzy, J., Aury, J.M., Castagnone-Sereno, P., Danchin, E.G., Deleury, E., Perfus-Barbeoch, L., Anthouard, V., Artiguenave, F. & Blok, V.C. (2008). Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nature Biotechnology 26, 909-915. DOI: 10.1038/nbt.1482
Abdel-Rahman, F.H., Alaniz, N.M. & Saleh, M.A. (2013). Nematicidal activity of terpenoids. Journal of Environmental Science and Health 48, 16-22. DOI: 10.1080/03601234.2012.716686
Abebew, D., Sayedain, F.S., Bode, E. & Bode, H.B. (2022). Uncovering nematicidal natural products from Xenorhabdus bacteria. Journal of Agricultural and Food Chemistry 70, 498-506. DOI: 10.1021/acs.jafc.1c05454
Aimani, A.E., Houari, A., Laasli, S.E., Mentag, R., Iraqi, D., Diria, G., Khayi, S., Lahlali, R., Dababat, A.A. & Mokrini, F. (2022). Antagonistic potential of Moroccan entomopathogenic nematodes against root-knot nematodes, Meloidogyne javanica on tomato under greenhouse conditions. Scientific Reports 12, 2915. DOI: 10.1038/s41598-022-07039-0
Bi, Y., Gao, C. & Yu, Z. (2018). Rhabdopeptides from Xenorhabdus budapestensis SN84 and their nematicidal activities against Meloidogyne incognita. Journal of Agricultural and Food Chemistry 66, 3833-3839. DOI: 10.1021/acs.jafc.8b00253
Bird, A.F. & Bird, J. (1986). Observations on the use of insect parasitic nematodes as a means of biological control of root-knot nematodes. International Journal for Parasitology 16, 511-516. DOI: 10.1016/0020-7519(86)90086-X
Brennan, P. & Zufall, F. (2006). Pheromonal communication in vertebrates. Nature 444, 308-315. DOI: 10.1038/nature05404
Castagnone-Sereno, P. (2002). Genetic variability in parthenogenetic root-knot nematodes, Meloidogyne spp., and their ability to overcome plant resistance genes. Nematology 4, 605-608. DOI: 10.1163/15685410260438872
Choe, A., von Reuss, S.H., Kogan, D., Gasser, R.B., Platzer, E.G., Schroeder, F.C. & Sternberg, P.W. (2012). Ascaroside signaling is widely conserved among nematodes. Current Biology 22, 772-780. DOI: 10.1016/j.cub.2012.03.024
Choi, I., Subramanian, P., Shim, D., Oh, B.J. & Hahn, B.S. (2017). RNA-Seq of plant-parasitic nematode Meloidogyne incognita at various stages of its development. Frontiers in Genetics 8, 190. DOI: 10.3389/fgene.2017.00190
Coyne, D.L., Cortada, L., Dalzell, J.J., Claudius-Cole, A.O., Haukeland, S., Luambano, N. & Talwana, H. (2018). Plant-parasitic nematodes and food security in sub-Saharan Africa. Annual Review of Phytopathology 56, 381-403. DOI: 10.1146/annurev-phyto-080417-045833
Favery, B., Quentin, M., Jaubert-Possamai, S. & Abad, P. (2016). Gall-forming root-knot nematodes hijack key plant cellular functions to induce multinucleate and hypertrophied feeding cells. Journal of Insect Physiology 84, 60-69. DOI: 10.1016/j.jinsphys.2015.07.013
Ferreira, T., Souza, R.M. & Dolinski, C. (2011). Assessing the influence of the entomopathogenic nematode Heterorhabditis baujardi LPP7 (Rhabiditina) on embryogenesis and hatching of the plant-parasitic nematode Meloidogyne mayaguensis (Tylenchina). Journal of Invertebrate Pathology 107, 164-167. DOI: 10.1016/j.jip.2011.04.002
Guo, W., Yan, X., Zhao, G. & Han, R.C. (2017). Increased efficacy of entomopathogenic nematode-insecticide combinations against Holotrichia oblita (Coleoptera: Scarabaeidae). Journal of Economic Entomology 110, 41-51. DOI: 10.1093/jee/tow241
Han, R.C., Cao, L. & Liu, X.L. (1992). Relationship between medium composition, inoculum size, temperature and culture time in the yields of Steinernema and Heterorhabditis nematodes. Fundamental and Applied Nematology 15, 223-229.
Hartley, C.J., Lillis, P.E., Owens, R.A. & Griffin, C.T. (2019). Infective juveniles of entomopathogenic nematodes (Steinernema and Heterorhabditis) secrete ascarosides and respond to interspecific dispersal signals. Journal of Invertebrate Pathology 168, 107257. DOI: 10.1016/j.jip.2019.107257
Hu, K., Li, J.X. & Webster, J.M. (1999). Nematicidal metabolites produced by Photorhabdus luminescens (Enterobacteriaceae), bacterial symbiont of entomopathogenic nematodes. Nematology 1, 457-469. DOI: 10.1163/156854199508469
Jeong, P.-Y., Jung, M., Yim, Y.-H., Kim, H., Park, M., Hong, E., Lee, W., Kim, Y.H., Kim, K. & Paik, Y.-K. (2005). Chemical structure and biological activity of the Caenorhabditis elegans dauer-inducing pheromone. Nature 433, 541-545. DOI: 10.1038/nature03201
Jones, J.T., Haegeman, A., Danchin, E.G.J., Gaur, H.S., Helder, J., Jones, M.G.K., Kikuchi, T., Manzanilla-López, R., Palomares-Rius, J.E., Wesemael, W.M.L. et al. (2013). Top 10 plant-parasitic nematodes in molecular plant pathology. Molecular Plant Pathology 14, 946-961. DOI: 10.1111/mpp.12057
Juvale, P.S. & Baum, T.J. (2018). “Cyst-ained” research into Heterodera parasitism. PLoS Pathogens 14, e1006791. DOI: 10.1371/journal.ppat.1006791
Kaplan, F., Alborn, H.T., von Reuss, S.H., Ajredini, R., Ali, J.G., Akyazi, F., Stelinski, L.L., Edison, A.S., Schroeder, F.C. & Teal, P.E. (2012). Interspecific nematode signals regulate dispersal behavior. PLoS ONE 7, e38735. DOI: 10.1371/journal.pone.0038735
Kenney, E., Yaparla, A., Hawdon, J.M., O’Halloran, D.M., Grayfer, L. & Eleftherianos, I. (2021). A putative lysozyme and serine carboxypeptidase from Heterorhabditis bacteriophora show differential virulence capacities in Drosophila melanogaster. Developmental and Comparative Immunology 114, 103820. DOI: 10.1016/j.dci.2020.103820
Kepenekci, I., Hazir, S. & Lewis, E.E. (2016). Evaluation of entomopathogenic nematodes and the supernatants of the in vitro culture medium of their mutualistic bacteria for the control of the root-knot nematodes Meloidogyne incognita and M. arenaria. Pest Management Science 72, 327-334. DOI: 10.1002/ps.3998
Kepenekci, I., Hazir, S., Oksal, E. & Lewis, E.E. (2018). Application methods of Steinernema feltiae, Xenorhabdus bovienii and Purpureocillium lilacinum to control root-knot nematodes in greenhouse tomato systems. Crop Protection 108, 31-38. DOI: 10.1016/j.cropro.2018.02.009
Khanal, C., Robbins, R.T., Faske, T.R., Szalanski, A.L. & Overstreet, C. (2016). Identification and haplotype designation of Meloidogyne spp. of Arkansas using molecular diagnostics. Nematropica 46, 261-270.
Kim, B., Song, G.C. & Ryu, C.M. (2016). Root exudation by aphid leaf infestation recruits root-associated Paenibacillus spp. to lead plant insect susceptibility. Journal of Microbiology and Biotechnology 26, 549-557. DOI: 10.4014/jmb.1511.11058
Kusakabe, A., Wang, C., Xu, Y.-M., Molnár, I. & Stock, S.P. (2022). Selective toxicity of secondary metabolites from the entomopathogenic bacterium Photorhabdus luminescens sonorensis against selected plant parasitic nematodes of the Tylenchina suborder. Microbiology Spectrum 10, e0257721. DOI: 10.1128/spectrum.02577-21
Labaude, S. & Griffin, C.T. (2018). Transmission success of entomopathogenic nematodes used in pest control. Insects 9, 72. DOI: 10.3390/insects9020072
Lewis, E.E., Grewal, P.S. & Sardanelli, S. (2001). Interactions between the Steinernema feltiae-Xenorhabdus bovienii insect pathogen complex and the root-knot nematode Meloidogyne incognita. Biological Control 2, 55-62. DOI: 10.1006/bcon.2001.0918
Maleita, C., Esteves, I., Chim, R., Fonseca, L., Braga, M.E.M., Abrantes, I. & de Sousa, H.C. (2017). Naphthoquinones from walnut husk residues show strong nematicidal activities against the root-knot nematode Meloidogyne hispanica. ACS Sustainable Chemistry & Engineering 5, 3390-3398. DOI: 10.1021/acssuschemeng.7b00039
Manosalva, P., Manohar, M., von Reuss, S.H., Chen, S., Koch, A., Kaplan, F., Choe, A., Micikas, R.J., Wang, X., Kogel, K.H. et al. (2015). Conserved nematode signalling molecules elicit plant defenses and pathogen resistance. Nature Communications 6, 7795. DOI: 10.1038/ncomms8795
Molina, J.P., Dolinski, C., Souza, R.M. & Lewis, E.E. (2007). Effect of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) on Meloidogyne mayaguensis Rammah and Hirschmann (Tylenchida: Meloidoginidae) infection in tomato plants. Journal of Nematology 39, 338-342.
Nermut’, J., Konopická, J., Zemek, R., Kopačka, M., Bohatá, A. & Půža, V. (2020). Dissemination of Isaria fumosorosea spores by Steinernema feltiae and Heterorhabditis bacteriophora. Journal of Fungi 6, 359. DOI: 10.3390/jof6040359
Nicol, J.M., Turner, S.J., Coyne, D.L., den Nijs, L., Hockland, S. & Maafi, Z.T. (2011). Current nematode threats to world agriculture. In: Jones, J., Gheysen, G. & Fenoll, C. (Eds). Genomics and molecular genetics of plant-nematode interactions. Dordrecht, The Netherlands, Springer, pp. 21-43. DOI: 10.1007/978-94-007-0434-3_2
Ntalli, N.G. & Caboni, P. (2012). Botanical nematicides: a review. Journal of Agriculture and Food Chemistry 60, 9929-9940. DOI: 10.1021/jf303107j
Oliveira-Hofman, C., Kaplan, F., Stevens, G., Lewis, E.E., Wu, S., Alborn, H.T., Perret-Gentil, A. & Shapiro-Ilan, D.I. (2019). Pheromone extracts act as boosters for entomopathogenic nematodes efficacy. Journal of Invertebrate Pathology 164, 38-42. DOI: 10.1016/j.jip.2019.04.008
Orozco, R.A., Molnár, I., Bode, H. & Stock, S.P. (2016). Bioprospecting for secondary metabolites in the entomopathogenic bacterium Photorhabdus luminescens subsp. sonorensis. Journal of Invertebrate Pathology 141, 45-52. DOI: 10.1016/j.jip.2016.09.008
Pérez, E.E. & Lewis, E.E. (2002). Use of entomopathogenic nematodes to suppress Meloidogyne incognita on greenhouse tomatoes. Journal of Nematology 34, 171-174.
Roder, A.C., Wang, Y., Butcher, R.A. & Stock, S.P. (2019). Influence of symbiotic and non-symbiotic bacteria on pheromone production in Steinernema nematodes (Nematoda, Steinernematidae). Journal of Experimental Biology 222, jeb212068. DOI: 10.1242/jeb.212068
Shapiro-Ilan, D.I. & Grewal, P.S. (2008). Entomopathogenic nematodes and insect management. In: Capinera, J.L. (Ed.). Encyclopedia of entomology, 2nd edition. Dordrecht, The Netherlands, Springer, pp. 1336-1340.
Shapiro-Ilan, D.I., Lewis, E.E., Son, Y. & Tedders, W.L. (2003). Superior efficacy observed in entomopathogenic nematodes applied in infected-host cadavers compared with application in aqueous suspension. Journal of Invertebrate Pathology 83, 270-272. DOI: 10.1016/s0022-2011(03)00101-0
Shapiro-Ilan, D.I., Nyczepir, A.P. & Lewis, E.E. (2006). Entomopathogenic nematodes and bacteria applications for control of the pecan root-knot nematode, Meloidogyne partityla, in the greenhouse. Journal of Nematology 38, 449-454.
Shapiro-Ilan, D.I., Han, R.C. & Qiu, X. (2014). Production of entomopathogenic nematodes. In: Morales-Ramos, J.A., Rojas, M.G. & Shapiro-Ilan, D.I. (Eds). Mass production of beneficial organisms: invertebrates and entomopathogens. CA, USA, Elsevier, Academic Press, pp. 321-355. DOI: 10.1016/B978-0-12-391453-8.00010-8
Song, J., Xu, Y.-L. & Yao, Q. (2014). Toxicity of entomopathogenic nematode symbiotic bacteria strains on eggs of plant parasite nematodes. Soybean Science 33, 896-899.
Srinivasan, J., von Reuss, S.H., Bose, N., Zaslaver, A., Mahanti, P., Ho, M.C., O’Doherty, O.G., Edison, A., Sternberg, P.W. & Schroeder, F.C. (2012). A modular library of small molecule signals regulates social behaviors in Caenorhabditis elegans. PloS Biology 10(1), e1001237. DOI: 10.1371/journal.pbio.1001237
von Reuss, S.H., Bose, N., Srinivasan, J., Yim, J.J., Judkins, J.C., Sternberg, P.W. & Schroeder, F.C. (2012). Comparative metabolomics reveals biogenesis of ascarosides, a modular library of small-molecule signals in C. elegans. Journal of the American Chemical Society 134, 1817-1824. DOI: 10.1021/ja210202y
Wang, J., Cao, L., Huang, Z., Gu, X., Cui, Y., Li, J., Li, Y., Xu, C. & Han, R.C. (2022). Influence of the ascarosides on the recovery, yield and dispersal of entomopathogenic nematodes. Journal of Invertebrate Pathology 188, 107717. DOI: 10.1016/j.jip.2022.107717
Wang, X.P. (2018). [The effect and mechanism of biological bacteria against root knot nematodes.] Master’s Thesis. University of Chinese Academy of Sciences, Beijing, P.R. China.
Xu, X., Yang, F., Wang, Y.P., Xie, J.L., Li, Y.J., Peng, Y.L. & Ji, H.L. (2021). [Prevailing species of root-knot nematodes from paddy-upland rotation fields in Chengdu plain.] Plant Protection 47, 259-265 +274. DOI: 10.16688/j.zwbh.2020294
Ye, W., Robbins, R.T. & Kirkpatrick, T. (2019). Molecular characterization of root-knot nematodes (Meloidogyne spp.) from Arkansas, USA. Scientific Reports 9, 15680. DOI: 10.1038/s41598-019-52118-4
Yu, Y., Zhang, Y.K., Manohar, M., Artyukhin, A.B., Kumari, A., Tenjo-Castano, F.J., Nguyen, H., Routray, P., Choe, A., Klessig, D.F. et al. (2021). Nematode signaling molecules are extensively metabolized by animals, plants, and microorganisms. ACS Chemical Biology 16, 1050-1058. DOI: 10.1021/acschembio.1c00217
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 756 | 346 | 43 |
Full Text Views | 27 | 5 | 0 |
PDF Views & Downloads | 48 | 7 | 0 |
Dispersal is an important behaviour for nematodes. Entomopathogenic nematodes (EPN) are able to regulate plant-parasitic nematodes in the field. However, the mechanism for the interactions between two types of nematodes is not clearly known. The effects of 12 synthesised ascarosides, three EPN species (Steinernema carpocapsae All, Heterorhabditis bacteriophora H06 and H. indica LN2), and 15 symbiotic bacterial isolates from EPN on the dispersal of Meloidogyne incognita were investigated. The results revealed that M. incognita juveniles were repelled, to various degrees, by most of the tested ascarosides (especially ascr#9), three species of EPN, and by bacterial isolates (especially TT01 from H. bacteriophora TT01 and H06 from H. bacteriophora H06), compared with the controls. Ascr#9 was abundant in M. incognita juvenile-conditioned supernatant. This provides useful cues for elucidating the interaction mechanism between two nematode groups and establishing alternative techniques for the safe and effective control of root-knot nematodes.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 756 | 346 | 43 |
Full Text Views | 27 | 5 | 0 |
PDF Views & Downloads | 48 | 7 | 0 |