Integrating cover crops and bionematicides presents a sustainable approach to managing plant-parasitic nematodes (PPN) in organic vegetable production systems. The integration of sunn hemp, Crotalaria juncea (‘Crescent sun’) and sorghum-sudangrass, Sorghum bicolor × S. sudanense (‘Sweet Six BMR’) with bionematicides was evaluated in two locations in central (Gulf Coast Research and Educational Centre – GCREC) and south (Fort Lauderdale Research and Educational Centre – FLREC) Florida for the effectiveness of PPN suppression. Field experiments were conducted with establishing cover crops in each location 3 months before planting organic zucchini on plastic beds equipped with a drip application system used to inject three commercial bionematicides (thyme oil, neem oil and azadirachtin) and the broth culture of Xenorhabdus bovienii bacteria associated with Steinernema feltiae. Cover cropping with sunn hemp and sorghum-sudangrass significantly reduced population densities of root-knot nematodes (Meloidogyne spp.) at GCREC, whereas only sunn hemp reduced the root-knot nematode population at FLREC. Galling severity on zucchini roots caused by Meloidogyne spp. was significantly lower in azadirachtin and neem oil applications integrated with sunn hemp. The impact of integrating cover crops with bionematicides on other PPN, such as Mesocriconema spp., Nanidorus minor and Hoplolaimus spp., varied among the treatments at both locations. Integrating cover crops with bionematicide applications provided additional control options for zucchini, but the efficacy of different bionematicides depended on the nematode species present in the soil and the cover crop species used. These findings underscore the importance of adaptive nematode management, where control strategies are customised to target the specific nematode populations causing economic damage in each field.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Agbenin, N.O., Emechebe, A.M., Marley, P.S. & Akpa, A.D. (2005). Evaluation of nematicidal action of some botanicals on Meloidogyne incognita in vivo and in vitro. The Journal of Agriculture and Rural Development in the Tropics and Subtropics 106, 29-39.
Azlay, L., El Boukhari, M.E.M., Mayad, E.H. & Barakate, M. (2023). Biological management of root-knot nematodes (Meloidogyne spp.): a review. Organic Agriculture 13, 99-117. DOI: 10.1007/s13165-022-00417-y
Chitwood, D.J. (2002). Phytochemical based strategies for nematode control. Annual Review of Phytopathology 40, 221-249. DOI: 10.1146/annurev.phyto.40.032602.130045
Crow, W.T., Weingartner, D.P., Dickson, D.W. & McSorley, R. (2001). Effect of sorghum sudangrass and velvet bean cover crops on plant-parasitic nematodes associated with potato production in Florida. Journal of Nematology 33, 285-288.
de Brida, A.L., Correia, E.C., Castro, B.M., Zanuncio, J.C. & Wilcken, S.R. (2017). Oat, wheat, and sorghum genotype reactions to Meloidogyne incognita and Meloidogyne javanica. Journal of Nematology 49, 386-389. DOI: 10.21307/jofnem-2017-086
de Paula, L.L., Campos, V.P., Terra, W.C., de Brum, D., Jacobs, D.C., Bui, H.X. & Desaeger, J. (2024). The combination of Bacillus amyloliquefaciens and Purpureocillium lilacinum in the control of Meloidogyne enterolobii. Biological Control 189, 105438. DOI: 10.1016/j.biocontrol.2023.105438
d’Errico, G., Sasanelli, N., Guastamacchia, F., Stillittano, V. & D’Addabbo, T. (2023). Efficacy of azadirachtin in the integrated management of the root-knot nematode Meloidogyne incognita on short- and long-cycle crops. Plants 12, 1362. DOI: 10.3390/plants12061362
Desaeger, J., Williams, K. & Rosskopf, E. (2022). Organic management strategies for nematode control in Florida plasticulture. In: Chaudhary, K.K. & Meghvansi, M.K. (Eds). Sustainable management of nematodes in agriculture. Cham, Switzerland, Springer, pp. 293-325. DOI: 10.1007/978-3-031-09943-4_12
Forghani, F. & Hajihassani, A. (2020). Recent advances in the development of environmentally benign treatments to control root-knot nematodes. Frontiers in Plant Science 11, 1125. DOI: 10.3389/fpls.2020.01125
Giné, A., Monfort, P. & Sorribas, F.J. (2021). Creation and validation of a temperature-based phenology model for Meloidogyne incognita on common bean. Plants 10, 240. DOI: 10.3390/plants10020240
Godinez-Vidal, D., Edwards, S.M. & Groen, S.C. (2024). Root-knot nematode egg extraction. Protocols.io. DOI: 10.17504/protocols.io.eq2lyj5nqlx9/v1
Grabau, Z.J. (2021). Nematode management using sorghum and its relatives. ENY716/IN531. Gainesville, FL, USA, EDIS. DOI: 10.32473/edis-in531-2021
Hajihassani, A., Hamidi, N., Dutta, B. & Tyson, C. (2018). First report of stubby root nematode, Paratrichodorus minor, on onion in Georgia, USA. Journal of Nematology 50, 453-455. DOI: 10.21307/jofnem-2018-038
Hatfield, J.L., Gitelson, A.A., Schepers, J.S. & Walthall, C.L. (2008). Application of spectral remote sensing for agronomic decisions. Agronomy Journal 100, 117-131. DOI: 10.2134/agronj2006.0370c
Hazir, S., Shapiro-Ilan, D.I., Bock, C.H., Hazir, C., Leite, L.G. & Hotchkiss, M.W. (2016). Relative potency of culture supernatants of Xenorhabdus and Photorhabdus spp. on growth of some fungal phytopathogens. European Journal of Plant Pathology 146, 369-381. DOI: 10.1007/s10658-016-0923-9
Hooks, C.R., Wang, K.H., Ploeg, A. & McSorley, R. (2010). Using marigold (Tagetes spp.) as a cover crop to protect crops from plant-parasitic nematodes. Applied Soil Ecology 46, 307-320. DOI: 10.1016/j.apsoil.2010.09.005
Hussey, R.S. & Janssen, G.J.W. (2002). Root-knot nematodes, Meloidogyne species. In: Starr, J.L., Cook, R. & Bridge, J. (Eds). Plant resistance to parasitic nematodes. Wallingford, UK, CAB International, pp. 43-70.
Insunza, V., Aballay, E. & Macaya, J. (2001). In vitro nematicidal activity of aqueous plant extracts on Chilean populations of Xiphinema americanum sensu lato. Nematropica 3, 57-64.
Jenkins, W.R. (1964). A rapid centrifugal-flotation technique for separating nematodes from soil. Plant Disease Reporter 48, 692-693.
Lewis, E.E. & Grewal, P.S. (2005). Interactions with plant parasitic nematodes. In: Grewal, P.S., Ehlers, R.-U. & Shapiro-Ilan, D.I. (Eds). Nematodes as biocontrol agents. Wallingford, UK, CAB International, pp. 349-362.
Marquez, J. & Hajihassani, A. (2023). Successional effects of cover cropping and deep tillage on suppression of plant-parasitic nematodes and soilborne fungal pathogens. Pest Management Science 79, 2737-2747. DOI: 10.1002/ps.7450
Marquez, J. & Hajihassani, A. (2024). Seasonal fluctuations in plant-parasitic nematode vertical distributions and their interactions with edaphic factors in vegetable fields of South Georgia, USA. Phytobiomes Journal 8, 643-655. DOI: 10.1094/PBIOMES-02-24-0014-R
Marquez, J., Hajihassani, A. & Davis, R.F. (2022). Evaluation of summer and winter cover crops for variations in host suitability for Meloidogyne incognita, M. arenaria and M. javanica. Nematology 24, 841-854. DOI: 10.1163/15685411-bja10172
Martin, B. (2017). Nematodes in southern turfgrasses. Golfdom 73, 30-34.
Martín, R.S. & Magunacelaya, J.C. (2005). Control of plant-parasitic nematodes with extracts of Quillaja saponaria. Nematology 7, 577-585. DOI: 10.1163/156854105774384732
Martins, F., Costa, M. & Galhano, C.I. (2015). On the way for a new bionematicide. Agriculture and Food 3, 3-10.
McSorley, R. (2011). Overview of organic amendments for management of plant-parasitic nematodes, with case studies from Florida. Journal of Nematology 43, 69-81.
McSorley, R. & Gallaher, R.N. (1991). Nematode population changes and forage yields of six corn and sorghum cultivars. Journal of Nematology 23, 673-677.
McSorley, R., Dickson, D.W., de Brito, J.A. & Hochmuth, R.C. (1994). Tropical rotation crops influence nematode densities and vegetable yields. Journal of Nematology 26, 308-314.
McSorley, R., Seal, D.R., Klassen, W., Wang, K.H. & Hooks, C.R.R. (2009). Non-target effects of sunn hemp and marigold cover crops on the soil invertebrate community. Nematropica 1, 235-245.
Meyer, S.L.F., Huettel, R.N., Liu, X.Z. & Juba, J. (2016). Evaluation of biopesticides for controlling root-knot nematodes on tomatoes. Journal of Nematology 48, 22-29.
Myers, R., Mello, C.L. & Ragasa, T. (2017). Azadirachtin powder for control of root-knot nematodes in tomato. Journal of Nematology 49, 517. [Abstr.]
Nguyen, M.-H., Vu, N.-B.-D., Nguyen, T.-H.-N., Tran, T.-N.-M., Le, H.-S., Tran, T.-T., Le, X.-C., Le, V.-T., Nguyen, N.-T. & Trinh, N.-A. (2023). Effective biocontrol of nematodes using lipid nanoemulsions co-encapsulating chili oil, cinnamon oil and neem oil. International Journal of Pest Management 69, 130-139. DOI: 10.1080/09670874.2020.1861361
Nguyen, T.V., Wysocki, A., Treadwell, D., Farnsworth, D. & Clark, J. (2008). Economics of the organic food industry in Florida. Gainesville, FL, USA, University of Florida IFAS Extension, FE732.
Nnamdi, C., Grey, T.L. & Hajihassani, A. (2022). Root-knot nematode management for pepper and squash rotations using plasticulture systems with fumigants and non-fumigant nematicides. Crop Protection 152, 105844. DOI: 10.1016/j.cropro.2021.105844
Nyczepir, A.P. & Thomas, S.H. (2009). Current and future management strategies in intensive crop production systems. In: Perry, R.N., Moens, M. & Starr, J.L. (Eds). Root-knot nematodes. Wallingford, UK, CAB International, pp. 412-443.
Oka, Y., Shapira, N. & Fine, P. (2007). Control of root-knot nematodes in organic farming systems by organic amendments and soil solarization. Crop Protection 26, 1556-1565. DOI: 10.1016/j.cropro.2007.01.003
Paudel, R., Waisen, P. & Wang, K.H. (2021). Exploiting the innate potential of sorghum/sorghum-sudangrass cover crops to improve soil microbial profile that can lead to suppression of plant-parasitic nematodes. Microorganisms 9, 1831. DOI: 10.3390/microorganisms9091831
R Core Team (2023). R: A language and environment for statistical computing. Vienna, Austria, R Foundation for Statistical Computing, available online at https://www.R-project.org/.
Robačer, M., Canali, S., Kristensen, H.L., Bavec, F., Mlakar, S.G., Jakop, M. & Bavec, M. (2016). Cover crops in organic field vegetable production. Scientia Horticulturae 208, 104-110. DOI: 10.1016/j.scienta.2015.12.029
Rodriguez-Kábana, R., Weaver, D.B., Robertson, D.G., Weaver, C.F. & Carden, E.L. (1991). Rotations of soybean with tropical corn and sorghum for the management of nematodes. Supplement to Journal of Nematology 23, 662-667.
Shannag, H.K., Capinera, J.L. & Freihat, N.M. (2013). Use of neem-based insecticides against southern armyworm, Spodoptera eridania (Stoll) (Lepidoptera: Noctuidae). Trends in Entomoalogy 19, 45-53.
Stirling, G.R. (2014). Biological control of plant-parasitic nematodes: Soil ecosystem management in sustainable agriculture. Wallingford, UK, CAB International.
Thoden, T. & Boppré, M. (2010). Plants producing pyrrolizidine alkaloids: sustainable tools for nematode management. Nematology 12, 1-24. DOI: 10.1163/138855409X12549869072248
Todd, T.C. & Tisserat, N.A. (1990). Occurrence, spatial distribution, and pathogenicity of some phytoparasitic nematodes on creeping bentgrass putting greens in Kansas. Journal of Nematology 22, 33-39.
Wang, K.H. & McSorley, R. (2004). Management of nematodes and soil fertility with sunn hemp cover crop. Gainesville, FL, USA, University of Florida IFAS Extension, ENY-717.
Wang, K.H., Sipes, B.S. & Schmitt, D.P. (2002). Crotalaria as a cover crop for nematode management: A review. Nematropica 32, 35-57.
Willer, H., Trávníček, J. & Schlatter, S. (2024). The world of organic agriculture: Statistics and emerging trends. Organics International 25, 39-100. https://orgprints.org/52272.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 219 | 219 | 219 |
Full Text Views | 23 | 23 | 23 |
PDF Views & Downloads | 45 | 45 | 45 |
Integrating cover crops and bionematicides presents a sustainable approach to managing plant-parasitic nematodes (PPN) in organic vegetable production systems. The integration of sunn hemp, Crotalaria juncea (‘Crescent sun’) and sorghum-sudangrass, Sorghum bicolor × S. sudanense (‘Sweet Six BMR’) with bionematicides was evaluated in two locations in central (Gulf Coast Research and Educational Centre – GCREC) and south (Fort Lauderdale Research and Educational Centre – FLREC) Florida for the effectiveness of PPN suppression. Field experiments were conducted with establishing cover crops in each location 3 months before planting organic zucchini on plastic beds equipped with a drip application system used to inject three commercial bionematicides (thyme oil, neem oil and azadirachtin) and the broth culture of Xenorhabdus bovienii bacteria associated with Steinernema feltiae. Cover cropping with sunn hemp and sorghum-sudangrass significantly reduced population densities of root-knot nematodes (Meloidogyne spp.) at GCREC, whereas only sunn hemp reduced the root-knot nematode population at FLREC. Galling severity on zucchini roots caused by Meloidogyne spp. was significantly lower in azadirachtin and neem oil applications integrated with sunn hemp. The impact of integrating cover crops with bionematicides on other PPN, such as Mesocriconema spp., Nanidorus minor and Hoplolaimus spp., varied among the treatments at both locations. Integrating cover crops with bionematicide applications provided additional control options for zucchini, but the efficacy of different bionematicides depended on the nematode species present in the soil and the cover crop species used. These findings underscore the importance of adaptive nematode management, where control strategies are customised to target the specific nematode populations causing economic damage in each field.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 219 | 219 | 219 |
Full Text Views | 23 | 23 | 23 |
PDF Views & Downloads | 45 | 45 | 45 |