Jeu de Paume & Jeux de la Raison in Seventeenth-Century Optics

in Nuncius
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

In La Dioptrique (1637) René Descartes elucidated his derivation of the sine law of refraction by means of a comparison of light rays with the motion of tennis balls. In terms of a mathematical-physical model this comparison was quite problematic, as his critics then and now did not hesitate to point out. However, they misread Descartes’ intention, which was to appeal in a clarifying way to the imagination of his readers in order to render his discoveries comprehensible. These readers were in the first place the circle of supporters around Constantijn Huygens. In his comparisons Descartes drew directly on the cultural meanings and the practice of tennis in the urban culture of the Dutch Republic. The tennis metaphor entered Descartes’ writing in this cultural setting, providing him with a clue to understanding the rainbow. Later, however, in the Météores it figured much less prominently than in La Dioptrique.

Jeu de Paume & Jeux de la Raison in Seventeenth-Century Optics

in Nuncius

Sections

References

2

Ingrid de Smet“Town and Gown in the Dutch Golden Age: the Menippean Satires of Jan Bodecher Benningh (1631) ‘Amatus Fornacius’,” in Myricae. Essays on Neo-Latin Literature in Memory of Jozef Ijsewijnedited by Dirk Sacré Gilbert Tournoy (Leuven: Leuven University Press 2000) pp. 491-521; Cees de Bondt ‘Heeft yemant lust met bal of met reket te spelen…?’ Tennis in Nederland 1500-1800 (Hilversum: Verloren 1993) pp. 50-52; 100-101.

5

Neil Ribe“Cartesian Optics and the Mastery of Nature,” Isis1997 88:42-61.

7

René DescartesDiscours de la méthode pour bien conduire sa raison et chercher la vérité dans les sciences. Plus La Dioptrique. Les Meteores. et La Geometrie. Qui sont des essais de cete Methode (Leiden: Ian Maire1637) p. 10. “Ce que ceux qui jouent à la paume esprouvent assés lors que leur bale rencontre de faux quareaux ou bien qu’ils la touchent en biaisant de leur raquette ce qu’ils nomment ce me semble coupper ou friser.”

17

Stephen GaukrogerDescartes. An Intellectual Biography (Oxford: Clarendon Press1995) pp. 217-222; Zittel Météores (cit. note 8) pp. 13-18.

18

Letter to Mersenne 25 February 1630in Charles Adam Paul Tannery (eds.) Oeuvres de Descartes 11 vols. Vol. 1 (Paris: Léopold Cerf 1897-1909) p. 117. The metaphor thus appeared independently of Galileo.

27

Claus ZittelTheatrum Philosophicum: Descartes und die Rolle ästhetischer Formen in der Wissenschaft (Berlin: Akademie Verlag2009) pp. 208-228.

29

Han van Ruler“Inleiding,” in Bibliotheek Descartes8 vols.. Vol. 3: Over de Methode edited by Erik-Jan Bos Han van Ruler (Amsterdam 2011-) pp. 9-56; Schuster Descartes Opticien (cit. note 12) pp. 298-299.

32

Arjen DijkstraBetween Academics and Idiots. A Cultural History of Mathematics in the Dutch Province of Friesland (1600-1700) (Haren: A.F.B. Dijkstra2012) pp. 132-150; Huib Zuidervaart “The ‘true inventor’ of the telescope. A survey of 400 years of debate” in The Origins of the Telescope edited by Albert van Helden et al. (Amsterdam: KNAW Press 2010) pp. 9-44 pp. 19-26.

36

Cornelis de Waard“Schooten (Frans van),” in Nieuw Nederlandsch Biografisch Woordenboek10 vols. Vol. 7 edited by P.J. Blok P.C. Molhuysen (Leiden: Sijthoff 1927) cols. 1110-1115. See also Fokko Jan Dijksterhuis “Moving Around the Ellipse. Conic Sections in Leiden 1620-1660” in Silent Messengers: The Circulation of Material Objects of Knowledge in the Early Modern Low Countries edited by Sven Dupré Christoph Lüthy (Berlin: Lit 2011) pp. 89-124.

37

Martin EngelsDe Kaatsbaan van Franeker 1630-1684 (Leeuwarden: Provinciale Bibliotheek van Friesland1991); Bondt Heeft yemant lust (cit. note 2) pp. 93-99.

44

Jacob Jetzes KalmaKeatsen yn Fryslân. It spul mei de lytse bal troch de ieuwen hinne (Frentsjer: Wever1961) pp. 48-60.

47

François RabelaisLa vie très horrificque du grand Gargantua pere de Pantagruel jadis composée par M. Alcofribas abstracteur de quinte essence. Livre plein de Pantagruelisme(Lyon: Francoys Juste1542) chapter 58: f.154r-f.155r. “Donnez y allegories et intelligences tant graves que vouldrez et y ravassez vous et tout le monde ainsy que vouldrez. De ma part je n’y pense aultre sens enclous q’une description du jeu de paulme soubz obscures parolles.”

49

Matthew JonesThe Good Life in the Scientific Revolution. Descartes Pascal Leibniz and the Cultivation of Virtue (Chicago: University of Chicago Press2006) pp. 15-53.

54

Henricus RegiusPhilosophia Naturalis; in qua Tota Rerum Universitas per clara & facilia Principia explanatur (Amsterdam: Lud. et Dan. Elzevirios1661) p. 38. “Quid situs corporis moventis hîc possit manifestum est in determinatione pilæ reticulo propulsæ quæ pro varietate sitûs reticuli moventis in diversas partes perpendiculariter vel obliquè propellitur.”

56

Michael MahoneyThe Mathematical Career of Pierre de Fermat 1601-1665 (Princeton: Princeton University Press1973) pp. 375-390.

57

Fokko Jan DijksterhuisLenses and Waves. Christiaan Huygens and the Mathematical Science of Optics in the Seventeenth Century (Dordrecht: Kluwer2004) pp. 135-6. Huygens later showed that Fermat’s principle was valid for refraction not as an explanatory principle but as a consequence of the (wave) nature of light. In 1662 an accusation of plagiarism of the sine law was raised against Descartes.

65

Christiaan HuygensTraité de la lumière: où sont expliquées les causes de ce qui luy arrive dans la reflexion & dans la refraction et particulièrement dans l’étrange refraction du Cristal d’Islande (Leiden: Pierre vander Aa1690) p. 3. “[…] la vraye Philosophie dans laquelle on conçoit la cause de tous les effets naturels par des raisons de mechanique. Ce qu’il faut faire à mon avis ou bien renoncer à toute esperance de jamais rien comprendre dans la Physique.”

67

Alan ShapiroFits Passions and Paroxysms: Physics Method and Chemistry and Newton’s Theories of Colored Bodies and Fits of Easy Reflection (Cambridge: Cambridge University Press1993) pp. 40-48.

68

Alan Shapiro“Newton’s ‘Achromatic’ dispersion law: Theoretical background and experimental evidence,” Archive for History of Exact Sciences1979 21:91-128; Shapiro Fits (cit. note 67) pp. 144-146.

69

Zev Bechler“Newton’s search for a mechanistic model of colour dispersion: a suggested interpretation,” Archive for History of Exact Sciences1973 11:1-37; Dijksterhuis Once Snell Breaks Down (cit. note 9).

Figures

  • View in gallery

    Engraving of Crispijn van de Passe from Nieuwen Jeucht Spieghel (1617).

  • View in gallery

    Descartes’ tennis comparison (La Dioptrique, p. 17).

  • View in gallery

    Effects of surfaces of ball trajectory (La Dioptrique, p. 10).

  • View in gallery

    Reflection and diagram of analysis refraction (La Dioptrique, p. 13 and p. 20).

  • View in gallery

    Production of colors by relative spin (Les Météores, p. 258).

  • View in gallery

    Illustration of tennis in the 1781 edition of Comenius’ Orbis Sensualium Pictus.

  • View in gallery

    Tennis comparison for total reflection (La Dioptrique, p. 19).

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 19 19 5
Full Text Views 7 7 7
PDF Downloads 3 3 3
EPUB Downloads 0 0 0