Perceptual analogues of centre–surround suppression have been applied as indirect measures of cortical inhibitory function in several clinical disorders. Two tasks have been used: a centre–surround contrast perception task and a motion direction discrimination task, where the stimulus size and contrast is varied to measure surround suppression effects. The tasks are markedly different, yet previous literature implies that both measures indirectly assess inhibitory function and that results will be complementary. This is not the case for age-related effects on surround suppression, however, as previous reports using the different measures are conflicting. Here we use a low-spatial frequency, drifting grating version of the centre–surround contrast perception task, and compare results to those obtained with the motion direction task in a single group of older observers. Older adults demonstrate significantly increased perceptual surround suppression of contrast for drifting, high contrast stimuli. Using the motion discrimination task, older observers showed similar amounts of surround suppression for the largest stimulus. This study confirms that visual surround suppression is altered by ageing. The complexity of neuronal systems involved in centre–surround interactions makes it unlikely that a single perceptual task will be sufficient to describe the effects of clinical disorders on surround suppression.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Angelucci A., Bressloff P. C. (2006). Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extra-classical receptive field surround of primate V1 neurons, in: Progress in Brain Research, Martinez-Conde S., Macknik S. L., Martinez L. M., Alonso J. M., Tse P. U. (Eds), Vol. 154, pp. 93–120. Elsevier, Dordrecht.
Bair W., Cavanaugh J. R., Movshon J. A. (2003). Time course and time–distance relationships for surround suppression in Macaque V1 neurons, J. Neurosci. 23, 7690–7701.
Battista J., Badcock D. R., McKendrick A. M. (2010). Center–surround visual motion processing in migraine, Invest. Ophthalmol. Vis. Sci. 51, 6070–6076.
Battista J., Badcock D. R., McKendrick A. M. (2011). Migraine increases centre–surround suppression for drifting visual stimuli, PLoS One 6, e18211.
Betts L. R., Taylor C. P., Sekuler A. B., Bennett P. J. (2005). Aging reduces center–surround antagonism in visual motion processing, Neuron 45, 361–366.
Bonin V., Mante V., Carandini M. (2005). The suppressive field of neurons in lateral geniculate nucleus, J. Neurosci. 25, 10844–10856.
Cannon M. W., Fullenkamp S. C. (1991). Spatial interactions in apparent contrast: inhibitory effects among grating patterns of different spatial frequencies, spatial positions and orientations, Vision Res. 31, 1985–1998.
Cavanaugh J. R., Bair W., Movshon J. A. (2002a). Nature and interaction of signals from the receptive field center and surround in Macaque V1 neurons, J. Neurophysiol. 88, 2530–2546.
Cavanaugh J. R., Bair W., Movshon J. A. (2002b). Selectivity and spatial distribution of signals from the receptive field surround in Macaque V1 neurons, J. Neurophysiol. 88, 2547–2556.
Chubb C., Sperling G., Solomon J. A. (1989). Texture interactions determine perceived contrast, Proc. Natl. Acad. Sci. USA 86, 9631–9635.
Churan J., Khawaja F. A., Tsui J. M. G., Pack C. C. (2008). Brief motion stimuli preferentially activate surround-suppressed neurons in macaque visual area MT, Curr. Biol. 18, R1051–R1052.
Croner L. J., Kaplan E. (1995). Receptive fields of P and M ganglion cells across the primate retina, Vision Res. 35, 7–24.
Dakin S., Carlin P., Hemsley D. (2005). Weak suppression of visual context in chronic schizophrenia, Curr. Biol. 15, R822–R824.
Ditchfield J. A., McKendrick A. M., Badcock D. R. (2006). Processing of global form and motion in migraineurs, Vision Res. 46, 141–148.
Ejima Y., Takahashi S. (1985). Apparent contrast of a sinusoidal grating in the simultaneous presence of peripheral gratings, Vision Res. 25, 1223–1232.
Glasser D. M., Tadin D. (2010). Low-level mechanisms do not explain paradoxical motion percepts, J. Vision 10, 1–9.
Golomb J. D., McDavitt J. R. B., Ruf B. M., Chen J. I., Saricicek A., Maloney K. H., Hu J., Chun M. M., Bhagwagar Z. (2009). Enhanced visual motion perception in major depressive disorder, J. Neurosci. 29, 9072–9077.
Henson D. B., Chaudry S., Artes P. H., Faragher E. B., Ansons A. (2000). Response variability in the visual field: comparison of optic neuritis, glaucoma, ocular hypertension and normal eyes, Investigat. Ophthalmol. Vis. Sci. 41, 417–421.
Huang W., Jiao L., Jia J. (2008a). Modeling contextual modulation in the primary visual cortex, Neural Networks (2008 Special Issue) 21, 1182–1196.
Huang X., Albright T. D., Stoner G. R. (2008b). Stimulus dependency and mechanisms of surround modulation in cortical area MT, J. Neurosci. 28, 13889–13906.
Jones H. E., Grieve K. L., Wang W., Sillito A. M. (2001). Surround suppression in Primate V1, J. Neurophysiol. 86, 2011–2028.
Karas R., McKendrick A. M. (2009). Aging alters surround modulation of perceived contrast, J. Vision 9, 1–9.
Kilpeläinen M., Donner K., Laurinen P. (2007). Time course of suppression by surround gratings: highly contrast-dependent, but consistently fast, Vision Res. 47, 3298–3306.
Leventhal A. G., Wang Y., Pu M., Zhou Y., Ma Y. (2003). GABA and its agonists improved visual cortical function in senescent monkeys, Science 300, 812.
Levitt J. B., Lund J. S. (1997). Contrast dependence of contextual effects in primate visual cortex, Nature 387, 73–76.
Pack C. C., Hunter J. N., Born R. T. (2005). Contrast dependence of suppressive influences in cortical area MT of alert Macaque, J. Neurophysiol. 93, 1809–1815.
Petrov Y., McKee S. P. (2006). The effect of spatial configuration on surround suppression of contrast sensitivity, J. Vision 6, 1–5.
Petrov Y., McKee S. P. (2009). The time course of contrast masking reveals two distinct mechanisms of human surround suppression, J. Vision 9, 1–11.
Sceniak M. P., Ringach D. L., Hawken M. J., Shapley R. (1999). Contrast’s effect on spatial summation by macaque V1 neurons, Nature Neurosci. 2, 733.
Schmolesky M. T., Wang Y., Pu M., Leventhal A. G. (2000). Degradation of stimulus selectivity of visual cortical cells in senescent rhesus monkeys, Nature Neurosci. 3, 384.
Schwabe L., Ichida J. M., Shushruth S., Mangapathy P., Angelucci A. (2010). Contrast-dependence of surround suppression in Macaque V1: experimental testing of a recurrent network model, Neuroimage 52, 777–792.
Solomon S. G., White A. J. R., Martin P. R. (2002). Extraclassical receptive field properties of parvocellular, magnocellular and koniocellular cells in the primate lateral geniculate nucleus, J. Neurosci. 22, 338–349.
Tadin D., Kim J., Doop M. L., Gibson C., Lappin J. S., Blake R., Park S. (2006). Weakened center–surround interactions in visual motion processing in schizophrenia, J. Neurosci. 26, 11403–11412.
Tadin D., Lappin J. S. (2005). Optimal size for perceiving motion decreases with contrast, Vision Res. 45, 2059–2064.
Tadin D., Lappin J. S., Gilroy L. A., Blake R. (2003). Perceptual consequences of centre–surround antagonism in visual motion processing, Nature 424, 312–315.
Tailby C., Solomon S. G., Peirce J. W., Metha A. B. (2007). Two expressions of in V1 that arise independent of cortical mechanisms of suppression, Vis. Neurosci. 24, 99–109.
Wall M., Maw R. J., Stanek K. E., Chauhan B. C. (1996). The psychometric function and reaction times of automated perimetry in normal and abnormal areas of the visual field in patients with glaucoma, Investigat. Ophthalmol. Vis. Sci. 37, 878–885.
Wetherill G., Levitt H. (1965). Sequential estimation of points on a psychometric function, Brit. J. Math. Stat. Psychol. 18, 1–10.
Wichmann F. A., Hill N. J. (2001). The psychometric function: I. Fitting, sampling and goodness of fit, Percept. Psychophys. 63, 1293–1313.
Xing J., Heeger D. J. (2000). Center–surround interactions in foveal and peripheral vision, Vision Res. 40, 3065–3072.
Xing J., Heeger D. J. (2001). Measurement and modeling of center-surround suppression and enhancement, Vision Res. 41, 571–583.
Yang Y., Liang Z., Li G., Wang Y., Zhou Y. (2009). Aging affects response variability of V1 and MT neurons in rhesus monkeys, Brain Res. 1274, 21–27.
Yu C., Klein S. A., Levi D. M. (2001). Surround modulation of perceived contrast and the role of brightness induction, J. Vision 1, 18–31.
Zenger-Landolt B., Heeger D. J. (2003). Response suppression in V1 agrees with psychophysics of surround masking, J. Neurosci. 23, 6884–6893.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 614 | 64 | 3 |
Full Text Views | 210 | 12 | 0 |
PDF Views & Downloads | 77 | 15 | 0 |
Perceptual analogues of centre–surround suppression have been applied as indirect measures of cortical inhibitory function in several clinical disorders. Two tasks have been used: a centre–surround contrast perception task and a motion direction discrimination task, where the stimulus size and contrast is varied to measure surround suppression effects. The tasks are markedly different, yet previous literature implies that both measures indirectly assess inhibitory function and that results will be complementary. This is not the case for age-related effects on surround suppression, however, as previous reports using the different measures are conflicting. Here we use a low-spatial frequency, drifting grating version of the centre–surround contrast perception task, and compare results to those obtained with the motion direction task in a single group of older observers. Older adults demonstrate significantly increased perceptual surround suppression of contrast for drifting, high contrast stimuli. Using the motion discrimination task, older observers showed similar amounts of surround suppression for the largest stimulus. This study confirms that visual surround suppression is altered by ageing. The complexity of neuronal systems involved in centre–surround interactions makes it unlikely that a single perceptual task will be sufficient to describe the effects of clinical disorders on surround suppression.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 614 | 64 | 3 |
Full Text Views | 210 | 12 | 0 |
PDF Views & Downloads | 77 | 15 | 0 |