Several definitions, measurements, and implicit meanings of ‘fixation stability’ have been used in clinical vision research, leading to some confusion. One definition concerns eye movements observed within fixations (i.e., within periods separated by saccades) when observing a point target: drift, microsaccades and physiological tremor all lead to some degree of within-fixation instability. A second definition relates to eye position during multiple fixations (and saccades) when patients fixate a point target. Increased between-fixation variability, combined with within-fixation instability, is known to be associated with poorer visual function in people with retinal disease such as age-related macular degeneration. In this review article, methods of eye stability measurement and quantification are summarised. Two common measures are described in detail: the bivariate contour ellipse area (BCEA) and the within-isolines area. The first measure assumes normality of the underlying positions distribution whereas the second does not. Each of these measures can be applied to two fundamentally different kinds of eye position data collected during a period of target observation. In the first case, mean positions of eye fixations are used to obtain an estimate of between-fixation variability. In the second case, often used in clinical vision research, eye position samples recorded by the eyetracker are used to obtain an estimate that confounds within- and between-fixation variability.
We show that these two methods can produce significantly different values of eye stability, especially when reported as BCEA values. Statistical techniques for describing eye stability when the distribution of eye positions is multimodal and not normally distributed are also reviewed.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Aguilar C., Castet E. (2011). Gaze-contingent simulation of retinopathy: some potential pitfalls and remedies, Vision Research 51, 997–1012.
Amador X. F., Malaspina D., Sackeim H. A., Coleman E. A., Kaufmann C. A., Hasan A., Gorman J. M. (1995). Visual fixation and smooth pursuit eye movement abnormalities in patients with schizophrenia and their relatives, J. Neuropsychiat. Clin. Neurosci. 7, 197–206.
Bedell H. E. (1980). A functional test of foveal fixation based upon differential cone directional sensitivity, Vision Research 20, 557–560.
Bellmann C., Feely M., Crossland M. D., Kabanarou S. A., Rubin G. S. (2004). Fixation stability using central and pericentral fixation targets in patients with age-related macular degeneration, Ophthalmology 111, 2265–2270.
Bowman A. W., Azzalini A. (1997). Applied Smoothing Techniques for Data Analysis: The Kernel Approach with S-Plus Illustrations. Oxford Science Publications, Oxford, UK.
Caldara R., Miellet S. (2011). iMap: a novel method for statistical fixation mapping of eye movement data, Behav. Res. Methods 43, 864–878.
Carpenter R. (1988). Movements of the Eyes. Pion, London, UK.
Collewijn H., Kowler E. (2008). The significance of microsaccades for vision and oculomotor control, J. Vision 8, 1–21.
Crossland M. D., Rubin G. S. (2002). The use of an infrared eyetracker to measure fixation stability, Optom. Vis. Sci. 79, 735–739.
Crossland M. D., Culham L. E., Kabanarou S. A., Rubin G. S. (2002). The use of an infra-red eyetracker in the assessment of macular disease: a comparison with the scanning laser ophthalmoscope, in: 7th Intl Conf. Low Vision, Goteburg, Sweden.
Crossland M. D., Culham L. E., Rubin G. S. (2004a). Fixation stability and reading speed in patients with newly developed macular disease, Ophthalmol. Physiol. Optic. 24, 327–333.
Crossland M. D., Kabanarou S. A., Rubin G. S. (2004b). An unusual strategy for fixation in a patient with bilateral advanced age related macular disease, Brit. J. Ophthalmol. 88, 1479–1480.
Crossland M. D., Culham L. E., Kabanarou S. A., Rubin G. S. (2005). Preferred retinal locus development in patients with macular disease, Ophthalmology 112, 1579–1585.
Crossland M. D., Dunbar H. M. P., Rubin G. S. (2009). Fixation stability measurement using the Mp1 microperimeter, Retina — J. Retinal Vitreous Diseases 29, 651–656.
Crossland M. D., Luong V. A., Rubin G. S., Fitzke F. W. (2011). Retinal specific measurement of dark-adapted visual function: validation of a modified microperimeter, BMC Ophthalmol. 11, 5.
Culham L. E., Fitzke F. W., Timberlake G. T., Marshall J. (1993). Assessment of fixation stability in normal subjects and patients using a scanning laser ophthalmoscope, Clin. Vis. Sci. 8, 551–561.
Culham L. E., Fitzke F. W., Marshall J. (1997). Training of patients with age-related macular disease (AMD) using a scanning laser ophthalmoscope (SLO), Ophthalmol. Physiol. Optic. 17, 542.
DeLuca M., Di Pace E., Judica A., Spinell D., Zoccolotti P. (1999). Eye movement patterns in linguistic and non-linguistic tasks in developmental surface dyslexia, Neuropsychologia 37, 1407–1420.
Deruaz A., Matter M., Whatham A. R., Goldschmidt M., Duret F., Issenhuth M., Safran A. B. (2004). Can fixation instability improve text perception during eccentric fixation in patients with central scotomas? Brit. J. Ophthalmol. 88, 461–463.
Di Russo F., Pitzalis S., Spinelli D. (2003). Fixation stability and saccadic latency in elite shooters, Vision Res. 43, 1837–1845.
Dunbar H. M., Crossland M. D., Rubin G. S. (2010). Fixation stability: a comparison between the Nidek MP-1 and the Rodenstock scanning laser ophthalmoscope in persons with and without diabetic maculopathy, Investigat. Ophthalmol. Vis. Sci. 51, 4346–4350.
Eden G. F., Stein J. F., Wood H. M., Wood F. B. (1994). Differences in eye movements and reading problems in dyslexic and normal children, Vision Res. 34, 1345–1358.
Engbert R. (2006). Microsaccades: a microcosm for research on oculomotor control, attention, and visual perception, Prog. Brain Res. 154, 177–192.
Engbert R., Kliegl R. (2004). Microsaccades keep the eyes’ balance during fixation, Psychol. Sci. 15, 431–436.
Falkenberg H., Rubin G., Bex P. (2007). Acuity, crowding, reading and fixation stability, Vision Res. 47, 126–135.
Fletcher D. C., Schuchard R. A. (1997). Preferred retinal loci relationship to macular scotomas in a low-vision population, Ophthalmology 104, 632–638.
Fujii G. Y., De Juan E. Jr., Sunness J. S., Humayun M. S., Pieramici D. J., Chang T. S. (2002). Patient selection for macular translocation surgery using the scanning laser ophthalmoscope, Ophthalmology 109, 1737–1744.
Gooding D. C., Grabowski J. A., Hendershot C. S. (2000). Fixation stability in schizophrenia, bipolar, and control subjects, Psychiatry Res. 97, 119–128.
Henderson J. M. (2003). Human gaze control during real-world scene perception, Trends Cognit. Sci. 7, 498–504.
Ihaka R., Gentleman R. (1996). R: A language for data analysis and graphics, J. Computat. Graph. Stat. 5, 299–314.
Macedo A. F., Crossland M. D., Rubin G. S. (2008). The effect of retinal image slip on peripheral visual acuity, J. Vision 8, 1–11.
Martinez-Conde S. (2006). Fixational eye movements in normal and pathological vision, Prog. Brain Res. 154, 151–176.
Martinez-Conde S., MacKnik S. L., Hubel D. H. (2004). The role of fixational eye movements in visual perception, Nat. Rev. Neurosci. 5, 229–240.
Martinez-Conde S., MacKnik S. L., Troncoso X. G., Dyar T. A. (2006). Microsaccades counteract visual fading during fixation, Neuron 49, 297–305.
Mergenthaler K., Engbert R. (2010). Microsaccades are different from saccades in scene perception, Exper. Brain Res. (Experimentelle Hirnforschung. Experimentation Cerebrale) 203, 753–757.
Nilsson U. L., Frennesson C., Nilsson S. R. G. (1998). Location and stability of a newly established eccentric retinal locus suitable for reading, achieved through training of patients with a dense central scotoma, Optom. Vis. Sci. 75, 873–878.
Nystrom M., Holmqvist K. (2010). An adaptive algorithm for fixation, saccade, and glissade detection in eyetracking data, Behav. Res. Methods 42, 188–204.
Otero-Millan J., Troncoso M. G., MacKnik S. L., Serrano-Pedraza I., Martinez-Conde S. (2008). Saccades and microsaccades during visual fixation, exploration, and search: foundations for a common saccadic generator, J. Vision 8, 1–18.
Over E. A., Hooge I. T., Erkelens C. J. (2006). A quantitative measure for the uniformity of fixation density: the Voronoi method, Behav. Res. Methods 38, 251–261.
Putnam N. M., Hofer H. J., Doble N., Chen L., Carroll J., Williams D. R. (2005). The locus of fixation and the foveal cone mosaic, J. Vision 5, 632–639.
Raymond J. E., Ogden N. A., Fagan J. E., Kaplan B. J. (1988). Fixational instability and saccadic eye movements of dyslexic children with subtle cerebellar dysfunction, Amer. J. Optom. Physiol. Opt. 65, 174–181.
Rayner K. (1998). Eye movements in reading and information processing: 20 years of research, Psychol. Bull. 124, 372–422.
Reinhard J., Messias A., Dietz K., Mackeben M., Lakmann R., Scholl H. P., Apfelstedt-Sylla E., Weber B. H., Seeliger M. W., Zrenner E., Trauzettel-Klosinski S. (2007). Quantifying fixation in patients with Stargardt disease, Vision Res. 47, 2076–2085.
Rohrschneider K., Becker M., Kruse F. E., Fendrich T., Volcker H. E. (1995). Stability of fixation: results of fundus-controlled examination using the scanning laser ophthalmoscope, Ger. J. Ophthalmol. 4, 197–202.
Rohrschneider K., Becker M., Schumacher N., Fendrich T., Volcker H. E. (1998). Normal values for fundus perimetry with the scanning laser ophthalmoscope, Amer. J. Ophthalmol. 126, 52–58.
Rolfs M. (2009). Microsaccades: small steps on a long way, Vision Res. 49, 2415–2441.
Rosse R. B., Malhotra A. K., Kim S. Y., Deutsch S. I. (1992). Visual fixation deficits and evidence of cognitive impairment in schizophrenia, Biol. Psychiatry 31, 412–414.
Rucci M., Iovin R., Poletti M., Santini F. (2007). Miniature eye movements enhance fine spatial detail, Nature 447, 851–854.
Sansbury R. V., Skavenski A. A., Haddad G. M., Steinman R. M. (1973). Normal fixation of eccentric targets, J. Opt. Soc. Amer. 63, 612–614.
Schuchard R. A., Fletcher D. C. (1994). Preferred retinal locus: a review with applications in low vision rehabilitation, Ophthalmol. Clin. North Amer. 7, 243–256.
Snodderly D. M., Kurtz D. (1985). Eye position during fixation tasks: comparison of macaque and human, Vision Res. 25, 83–98.
Steinman R. M. (1965). Effect of target size, luminance, and color on monocular fixation, J. Optic. Soc. Amer. 55, 1158–1165.
Steinman R. M., Cushman W. B., Martins A. J. (1982). The precision of gaze. A review, Human Neurobiol. 1, 97–109.
Stelmack J. A., Massof R. W., Stelmack T. R. (2004). Is there a standard of care for eccentric viewing training? J. Rehabil. Res. Dev. 41, 729–738.
Tarita-Nistor L., Gonzalez E. G., Markowitz S. N., Steinbach M. J. (2008). Fixation characteristics of patients with macular degeneration recorded with the mp-1 microperimeter, Retina 28, 125–133.
Tarita-Nistor L., Gonzalez E. G., Markowitz S. N., Steinbach M. J. (2009). Plasticity of fixation in patients with central vision loss, Vision Neurosci. 26, 487–494.
The R Development Core Team (2009). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing.
Timberlake G. T., Mainster M. A., Peli E., Augliere R. A., Essock E. A., Arend L. E. (1986). Reading with a macular scotoma. I. Retinal location of scotoma and fixation area, Investigat. Ophthalmol. Vis. Sci. 27, 1137–1147.
Timberlake G. T., Sharma M. K., Grose S. A., Gobert D. V., Gauch J. M., Maino J. H. (2005). Retinal location of the preferred retinal locus relative to the fovea in scanning laser ophthalmoscope images, Optom. Vis. Sci. 82, 177–185.
van der Geest J. N., Frens M. A. (2002). Recording eye movements with video-oculography and scleral search coils: a direct comparison of two methods, J. Neurosci. Methods 114, 185–195.
Vingolo E. M., Salvatore S., Cavarretta S. (2009). Low-vision rehabilitation by means of MP-1 biofeedback examination in patients with different macular diseases: a pilot study, Appl. Psychophysiol. Biofeedback 34, 127–133.
Vogel C. R., Arathorn D. W., Roorda A., Parker A. (2006). Retinal motion estimation in adaptive optics scanning laser ophthalmoscopy, Optic. Express 14, 487–497.
White J. M., Bedell H. E. (1990). The oculomotor reference in humans with bilateral macular disease, Investigat. Ophthalmol. Vis. Sci. 31, 1149–1161.
Whittaker S. G., Budd J., Cummings R. W. (1988). Eccentric fixation with macular scotoma, Investigat. Ophthalmol. Vis. Sci. 29, 268–278.
Zeffren B. S., Applegate R. A., Bradley A., van Heuven W. A. (1990). Retinal fixation point location in the foveal avascular zone, Investigat. Ophthalmol. Vis. Sci. 31, 2099–2105.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 2306 | 506 | 59 |
Full Text Views | 559 | 57 | 2 |
PDF Views & Downloads | 446 | 91 | 4 |
Several definitions, measurements, and implicit meanings of ‘fixation stability’ have been used in clinical vision research, leading to some confusion. One definition concerns eye movements observed within fixations (i.e., within periods separated by saccades) when observing a point target: drift, microsaccades and physiological tremor all lead to some degree of within-fixation instability. A second definition relates to eye position during multiple fixations (and saccades) when patients fixate a point target. Increased between-fixation variability, combined with within-fixation instability, is known to be associated with poorer visual function in people with retinal disease such as age-related macular degeneration. In this review article, methods of eye stability measurement and quantification are summarised. Two common measures are described in detail: the bivariate contour ellipse area (BCEA) and the within-isolines area. The first measure assumes normality of the underlying positions distribution whereas the second does not. Each of these measures can be applied to two fundamentally different kinds of eye position data collected during a period of target observation. In the first case, mean positions of eye fixations are used to obtain an estimate of between-fixation variability. In the second case, often used in clinical vision research, eye position samples recorded by the eyetracker are used to obtain an estimate that confounds within- and between-fixation variability.
We show that these two methods can produce significantly different values of eye stability, especially when reported as BCEA values. Statistical techniques for describing eye stability when the distribution of eye positions is multimodal and not normally distributed are also reviewed.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 2306 | 506 | 59 |
Full Text Views | 559 | 57 | 2 |
PDF Views & Downloads | 446 | 91 | 4 |