Amblyopia is a condition involving reduced acuity caused by abnormal visual input during a critical period beginning shortly after birth. Amblyopia is typically considered to be irreversible during adulthood. Here we provide the first demonstration that video game training can improve at least some aspects of the vision of adults with bilateral deprivation amblyopia caused by a history of bilateral congenital cataracts. Specifically, after 40 h of training over one month with an action video game, most patients showed improvement in one or both eyes on a wide variety of tasks including acuity, spatial contrast sensitivity, and sensitivity to global motion. As well, there was evidence of improvement in at least some patients for temporal contrast sensitivity, single letter acuity, crowding, and feature spacing in faces, but not for useful field of view. The results indicate that, long after the end of the critical period for damage, there is enough residual plasticity in the adult visual system to effect improvements, even in cases of deep amblyopia caused by early bilateral deprivation.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
American Optometric Association (1994). Care of the patient with amblyopia [Online]. St. Louis: American Optometric Association. Available at http://www.aoa.org/documents/CPG-4.pdf [accessed].
Astle A. T., Webb B. S., McGraw P. V. (2010). Spatial frequency discrimination learning in normal and developmentally impaired human vision, Vision Research 50, 2445–2454.
Attebo K., Mitchell P., Cumming R., Smith W., Jolly N., Sparkes R. (1998). Prevalence and causes of amblyopia in an adult population, Ophthalmology 105, 154–159.
Bavelier D., Levi D. M., Li R. W., Dan Y., Hensch T. K. (2010). Removing brakes on adult brain plasticity: from molecular to behavioral interventions, J. Neurosci. 30, 14964–14971.
Birnbaum M. H., Koslowe K., Sanet R. (1977). Success in amblyopia therapy as a function of age: a literature survey, Amer. J. Optomet. Physiol. Optics 54, 269–275.
Bowering E. R., Maurer D., Lewis T. L., Brent H. P. (1997). Constriction of the visual field of children after early visual deprivation, J. Pediat. Ophthalmol. Strabismus 34, 347–356.
Brainard D. H. (1997). The psychophysics toolbox, Spatial Vision 10, 433–436.
Brown S. A., Weih L. M., Fu C. L., Dimitrov P., Taylor H. R., McCarty C. A. (2000). Prevalence of amblyopia and associated refractive errors in an adult population in Victoria, Australia, Ophthalmic Epidemiology 7, 249–258.
Chung S. T. L., Li R. W., Levi D. M. (2006). Identification of contrast-defined letters benefits from perceptual learning in adults with amblyopia, Vision Research 46, 3853–3861.
Chung S. T. L., Li R. W., Levi D. M. (2007). Crowding between first- and second-order letter stimuli in normal foveal and peripheral vision, J. Vision 7, 1–13.
Constantinescu T., Schmidt L., Watson R., Hess R. F. (2005). A residual deficit for global motion processing after acuity recovery in deprivation amblyopia, Investigat. Ophthalmol. Vis. Sci. 46, 3008–3012.
Ellemberg D., Lewis T. L., Maurer D., Brar S., Brent H. P. (2002). Better perception of global motion after monocular than after binocular deprivation, Vision Research 42, 169–179.
Goldberg M. C., Maurer D., Lewis T. L., Brent H. P. (2001). The influence of binocular visual deprivation on the development of visual–spatial attention, Development. Neuropsychol. 19, 53–81.
Gottlob I., Stangler-Zuschrott E. (1990). Effect of levodopa on contrast sensitivity and scotomas in human amblyopia, Investigat. Ophthalmol. Vis. Sci. 31, 776–780.
Green C. S., Bavelier D. (2003). Action video game modifies visual selective attention, Nature 423, 534–537.
Green C. S., Bavelier D. (2006a). Enumeration versus multiple object tracking: the case of action video game players, Cognition 101, 217–245.
Green C. S., Bavelier D. (2006b). Effect of action video games on the spatial distribution of visuospatial attention, J. Exper. Psychol.: Human Percept. Perform. 32, 1465–1468.
Harvey L. (1986). Efficient estimation of sensory thresholds, Behav. Res. Methods 18, 623–632.
Hays R. D., Mangione C. M., Ellwein L., Lindblad A. S., Spritzer K. L., McDonnell P. J. (2003). Psychometric properties of the National Eye Institute — Refractive Error Quality of Life instrument, Ophthalmology 110, 2292–2301.
Hensch T. K. (2005). Critical period plasticity in local cortical circuits, Nature Rev. Neurosci., 6, 877–888.
Huang C.-B., Zhou Y., Lu Z.-L. (2008). Broad bandwidth of perceptual learning in the visual system of adults with anisometropic amblyopia, Proc. Nat. Acad. Sci. 105, 4068–4073.
Huang C.-B., Zhou J., Lu Z.-L., Feng L., Zhou Y. (2009). Binocular combination in anisometropic amblyopia, J. Vision 9, 1–14.
Jeon S. T., Hamid J., Maurer D., Lewis T. L. (2010). Developmental changes during childhood in single-letter acuity and its crowding by surrounding contours, J. Exper. Child Psychol. 107, 423–437.
Kontsevich L. L., Tyler C. W. (1999). Bayesian adaptive estimation of psychometric slope and threshold, Vision Research 39, 2729–2737.
Le Grand R., Mondloch C. J., Maurer D., Brent H. P. (2001). Neuroperception: early visual experience and face processing, Nature 410, 890.
Le Grand R., Mondloch C. J., Maurer D., Brent H. P. (2004). Impairment in holistic face processing following early visual deprivation, Psycholog. Sci. 15, 762–768.
Le Vay S., Wiesel T. N., Hubel D. H. (1980). The development of ocular dominance columns in normal and visually deprived monkeys, J. Compar. Neurol. 191, 1–51.
Leguire L. E., Rogers G. L., Bremer D. L. (1990). Amblyopia: the normal eye is not normal, J. Pediat. Ophthalmol. Strabismus 27, 32–38.
Leguire L. E., Rogers G. L., Walson P. D., Bremer D. L., McGregor M. L. (1998). Occlusion and levodopa-carbidopa treatment for childhood amblyopia, J. Amer. Assocn Pediat. Ophthalmol. Stabismus 2, 257–264.
Lesmes L. A., Jeon S.-T., Lu Z.-L., Dosher B. A. (2006). Bayesian adaptive estimation of threshold versus contrast external noise functions: the quick TvC method, Vision Research 46, 3160–3176.
Lesmes L. A., Lu Z.-L., Baek J., Albright T. D. (2010). Bayesian adaptive estimation of the contrast sensitivity function: the quick CSF method, J. Vision 10, 1–21.
Levi D. M., Klein S. A. (1985). Vernier acuity, crowding and amblyopia, Vision Research 25, 979–991.
Levi D. M., Polat U. (1996). Neural plasticity in adults with amblyopia, Proc. Nat. Acad. Sci. 93, 6830–6834.
Lewis T. L., Maurer D., Tytla M. E., Bowering E. R., Brent H. P. (1992). Vision in the ‘good’ eye of children treated for unilateral congenital cataract, Ophthalmology 99, 1013–1017.
Lewis T. L., Maurer D., Brent H. P. (1995). Development of grating acuity in children treated for unilateral or bilateral congenital cataract, Investigat. Ophthalmol. Vis. Sci. 36, 2080–2095.
Lewis T. L., Ellemberg D., Maurer D., Wilkinson F., Wilson H. R., Dirks M., Brent H. P. (2002). Sensitivity to global form in glass patterns after early visual deprivation in humans, Vision Research 42, 939–948.
Li X., Lu Z.-L., Xu P., Jin J., Zhou Y. (2003). Generating high gray-level resolution monochrome displays with conventional computer graphics cards and color monitors, J. Neurosci. Methods 130, 9–18.
Li R. W., Klein S. A., Levi D. M. (2008). Prolonged perceptual learning of positional acuity in adult amblyopia: perceptual template retuning dynamics, J. Neurosci. 28, 14223–14229.
Li R., Polat U., Makous W., Bavelier D. (2009). Enhancing the contrast sensitivity function through action video game training, Nature Neurosci. 12, 549–551.
Li R. W., Ngo C., Nguyen J., Levi D. M. (2011). Video-game play induces plasticity in the visual system of adults with amblyopia, PLoS Biol. 9, 1–11.
Mathworks (2008). MATLAB. 2008a ed.
Mitchell D. E., MacKinnon S. (2002). The present and potential impact of research on animal models for clinical treatment of stimulus deprivation amblyopia, Clin. Exper. Optomet. 85, 5–18.
Mondloch C. J., Grand R. L., Maurer D. (2002). Configural face processing develops more slowly than featural face processing, Perception 31, 553–566.
Mower G. D., Burchfiel J. L., Duffy F. H. (1982). Animal models of strabismic amblyopia: physiological studies of visual cortex and the lateral geniculate nucleus, Development. Brain Res. 5, 311–327.
Newsome W. T., Pare E. B. (1988). A selective impairment of motion perception following lesions of the middle temporal visual area (mt), J. Neurosci. 8, 2201–2211.
Pizzorusso T., Medini P., Landi S., Baldini S., Berardi N., Maffei L. (2006). Structural and functional recovery from early monocular deprivation in adult rats, Proc. Nat. Acad. Sci. 103, 8517–8522.
Polat U., Ma-Naim T., Belkin M., Sagi D. (2004). Improving vision in adult amblyopia by perceptual learning, Proc. Nat. Acad. Sci. 101, 6692–6697.
Robbins R., Nishimura M., Mondloch C., Lewis T., Maurer D. (2010). Deficits in sensitivity to spacing after early visual deprivation in humans: a comparison of human faces, monkey faces, and houses, Development. Psychobiol. 52, 775–781.
Rogers J. D., Sanchez-Saffon A., Frol A. B., Diaz-Arrastia R. (2003). Elevated plasma homocysteine levels in patients treated with levodopa: association with vascular disease, Arch. Neurol. 60, 59–64.
Ryff C. D. (1989). Happiness is everything, or is it? explorations on the meaning of psychological well-being, J. Personality Social Psychol. 57, 1069–1081.
Sale A., Maya Vetencourt J. F., Medini P., Cenni M. C., Baroncelli L., De Pasquale R., Maffei L. (2007). Environmental enrichment in adulthood promotes amblyopia recovery through a reduction of intracortical inhibition, Nature Neurosci. 10, 679–681.
Sekuler R., Ball K. (1986). Visual localization: age and practice, J. Optic. Soc. Amer. A 3, 864–867.
Thompson B., Mansouri B., Koski L., Hess R. F. (2012). From motor cortex to visual cortex: the application of noninvasive brain stimulation to amblyopia, Development. Psychobiol. 54, 263–273.
Vetencourt J. F. M., Sale A., Viegi A., Baroncelli L., De Pasquale R., O’Leary O. F., Castrén E., Maffei L. (2008). The antidepressant fluoxetine restores plasticity in the adult visual cortex, Science 320, 385–388.
Webber A. L., Wood J. (2005). Amblyopia: prevalence, natural history, functional effects and treatment, Clin. Exper. Optomet. 88, 365–375.
Wick B., Wingard M., Cotter S., Scheiman M. (1992). Anisometropic amblyopia: is the patient ever too old to treat? Optomet. Vision Sci. 69, 866–878.
Zhou Y., Huang C., Xu P., Tao L., Qiu Z., Li X., Lu Z.-L. (2006). Perceptual learning improves contrast sensitivity and visual acuity in adults with anisometropic amblyopia, Vision Research 46, 739–750.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 1675 | 302 | 35 |
Full Text Views | 250 | 33 | 1 |
PDF Views & Downloads | 104 | 11 | 2 |
Amblyopia is a condition involving reduced acuity caused by abnormal visual input during a critical period beginning shortly after birth. Amblyopia is typically considered to be irreversible during adulthood. Here we provide the first demonstration that video game training can improve at least some aspects of the vision of adults with bilateral deprivation amblyopia caused by a history of bilateral congenital cataracts. Specifically, after 40 h of training over one month with an action video game, most patients showed improvement in one or both eyes on a wide variety of tasks including acuity, spatial contrast sensitivity, and sensitivity to global motion. As well, there was evidence of improvement in at least some patients for temporal contrast sensitivity, single letter acuity, crowding, and feature spacing in faces, but not for useful field of view. The results indicate that, long after the end of the critical period for damage, there is enough residual plasticity in the adult visual system to effect improvements, even in cases of deep amblyopia caused by early bilateral deprivation.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 1675 | 302 | 35 |
Full Text Views | 250 | 33 | 1 |
PDF Views & Downloads | 104 | 11 | 2 |