Features of the Human Rod Bipolar Cell ERG Response During Fusion of Scotopic Flicker

in Seeing and Perceiving
Restricted Access
Get Access to Full Text

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?


The ability of the eye to distinguish between intermittently presented flash stimuli is a measure of the temporal resolution of vision. The aim of this study was to examine the relationship between the features of the human rod bipolar cell response (as measured from the scotopic ERG b-wave) and the psychophysically measured critical fusion frequency (CFF). Stimuli consisted of dim (∼0.04 Td ⋅ s), blue flashes presented either singly, or as flash pairs (at a range of time separations, between 5 and 300 ms). Single flashes of double intensity (∼0.08 Td ⋅ s) were also presented as a reference. Visual responses to flash pairs were measured via (1) recording of the ERG b-wave, and (2) threshold determinations of the CFF using a two-alternative forced-choice method (flicker vs. fused illumination). The results of this experiment suggest that b-wave responses to flash pairs separated by <100 ms are electrophysiologically similar to those obtained with single flashes of double intensity. Psychophysically, the percepts of flash pairs <100 ms apart appeared fused. In conclusion, the visual system’s ability to discriminate between scotopic stimuli may be determined by the response characteristics of the rod bipolar cell, or perhaps by the rod photoreceptor itself.

Features of the Human Rod Bipolar Cell ERG Response During Fusion of Scotopic Flicker

in Seeing and Perceiving



Abd-El-BarrM. M.PennesiM. E.SaszikS. M.BarrowA. J.LemJ.BramblettD. E.PaulD. L.FrishmanL. J.WuS. M. (2009). Genetic dissection of rod and cone pathways in the dark-adapted mouse retinaJ. Neurophysiol. 10219451955.

AlpernM.FallsH. F.LeeG. B. (1960). The enigma of typical total monochromacyAmer. J. Ophthalmol. 509961012.

BaddeleyA. D. (1993). Your Memory: A User’s Guide2nd edn. Lifecycle PublicationsLondon, UK.

BlakemoreC. B.RushtonW. A. H. (1965). Dark adaptation and increment threshold in a rod monochromatJ. Physiol. 181612628.

BloomfieldS. A.DacheuxR. F. (2001). Rod vision: pathways and processing in the mammalian retinaProgr. Retinal Eye Res. 20351384.

CameronA. M.MahrooO. A. R.LambT. (2006). Dark adaptation of human rod bipolar cells measured from the b-wave of the scotopic electroretinogramJ. Physiol. 507507526.

CameronA. M.MiaoL.RuseckaiteR.PiantaM. J.LambT. D. (2008). Dark adaptation recovery of human rod bipolar cell response kinetics estimated from scotopic b-wave measurementsJ. Physiol. 58654195436.

DawsonW. W.TrickG. L.LitzkowC. A. (1979). Improved electrode for electroretinographyInvestigat. Ophthalmol. Vis. Sci. 18988991.

EmsmannH. (1854). Ueber die dauer des lichteindrucksAnnalen der Physik 167611618.

FerryE. S. (1892). Persistence of visionAmer. J. Sci. 44192207.

FriedburgC.ThomasM. M.LambT. D. (2001). Time course of the flash response of dark- and light-adapted human rod photoreceptors derived from the electroretinogramJ. Physiol. 534217242.

FrishmanL. J.ReddyM. G.RobsonJ. G. (1996). Effects of background light on the human dark-adapted electroretinogram and psychophysical thresholdJ. Optic. Soc. Amer. A 13601612.

HechtS.ShlaerS. (1936). Intermittent stimulation by light V. The relation between intensity and critical frequency for different parts of the spectrumJ. Gen. Physiol. 19965977.

HechtS.SmithE. L. (1936). Intermittent stimulation by light VI. Area and the relation between critical frequency and intensityJ. Gen. Physiol. 19979989.

HechtS.VerrijpC. D. (1933). Intermittent stimulation by light. III. The relation between intensity and critical fusion frequency for different retinal locationsJ. Gen. Physiol. 17251268.

HechtS.ShlaerS.SmithE. L.HaigC.PeskinJ. C. (1938). The visual functions of a completely colorblind personAmer. J. Physiol. 1239495.

HechtS.ShlaerS.SmithE. L.HaigC.PeskinJ. C. (1948). The visual functions of the complete colorblindJ. Gen. Physiol. 31459472.

HessR. F.NordbyK. (1986). Spatial and temporal limits of vision in the achromatJ. Physiol. 371365385.

JacobsG. H.DeeganJ. S.MoranJ. L. (1996a). ERG measurements of the spectral sensitivity of common chimpanzee (pan troglodytes)Vision Res. 3625872594.

JacobsG. H.NeitzJ.KroghK. (1996b). Electroretinogram flicker photometry and its applicationsJ. Optic. Soc. Amer. A 13641648.

KremersJ.LeeB. B.KaiserP. K. (1992). Sensitivity of macaque retinal ganglion cells and human observers to combined luminance and chromatic modulationJ. Optic. Soc. Amer. A 914771485.

KremersJ.StepienM. W.SchollH. P. N.SaitoC. (2003). Cone selective adaptation influences L- and M-cone driven signals in electroretinography and psychophysicsJ. Vision 3146160.

KremersJ.RodriguesA. R.de Lima SilveiraL. C.da Silva FilhoM. (2010). Flicker ERGs representing chromaticity and luminance signalsInvestigat. Ophthalmol. Vis. Sci. 51577587.

LeeB. B.MartinP. R.ValbergA. (1989). Sensitivity of macaque retinal ganglion cells to chromatic and luminance flickerJ. Physiol. 414223243.

NeitzJ.JacobsG. H. (1984). Electroretinogram measurements of cone spectral sensitivity in dichromatic monkeysJ. Optic. Soc. Amer. A 111751180.

NicholsE. L. (1884). On the duration of color impressions upon the retinaAmer. J. Sci. 28234252.

PlateauJ. (1829). Dissertation sur quelques propriétés des impressions produites par la lumière sur l’organe de la vue. Dessain Liege.

PorterT. C. (1902). Contribution to the study of flicker. Paper IIProc. Royal Soc. London 70313329.

RuseckaiteR.LambT. D.PiantaM. J.CameronA. M. (2011). Human scotopic dark adaptation: comparison of recoveries of psychophysical threshold and ERG b-wave sensitivityJ. Vision 11(8) pii 2116.

SchollH. P. N.LangrovaH.WeberB. H. F.ZrennerE.Apfelstedt-SillaE. (2001a). Clinical electrophysiology of two rod pathways: normative values and clinical applicationGraefe’s Arch. Clin. Exper. Ophthalmol. 2397180.

SchollH. P. N.LangrovaH.PuschC. M.WissingerB.ZrennerE.Apfelstedt-SillaE. (2001b). Slow and fast rod ERG pathways in patients with X-linked complete stationary night blindness carrying mutations in the NYX geneInvestigat. Ophthalmol. Vis. Sci. 4227283276.

SeipleW.HolopigianK. (1996). Outer-retina locus of increased flicker sensitivity of the peripheral retinaJ. Optic. Soc. Amer. A 13658666.

SharpeL. T.StockmanA. (1999). Rod pathways: the importance of seeing nothingTrends Neurosci. 22497504.

SokolS.RiggsL. A. (1971). Electrical and psychophysical responses of the human visual system to periodic variation of luminanceInvestigat. Ophthalmol. Vis. Sci. 10171180.

StockmanA.SharpeL. T.ZrennerE.NordbyK. (1991). Slow and fast pathways in the human rod visual system: electrophysiology and psychophysicsJ. Optic. Soc. Amer. A 816571665.

StockmanA.SharpeL. T.RütherK.NordbyK. (1995). Two signals in the human rod visual system: a model based on electrophysiological dataVis. Neurosci. 12951970.

WässleH. (2004). Parallel processing in the mammalian retinaNature Rev. Neurosci. 5747757.


  • View in gallery

    (A) Family of b-wave responses to scotopic flashes of 9 different intensities. (B) Plot of the b-wave peak amplitude as a function of flash intensity. Subject in both panels J.S.L. The solid black curve indicates the Naka–Rushton saturation function (rrmax=Q(Q+Q0), rmax=130 µV, and Q0=0.12 Tds), and the dashed grey line its linear asymptote.

  • View in gallery

    Series of b-wave responses to single flashes (of ∼0.04 Td ⋅ s and ∼0.08 Td ⋅ s) and flash pairs (of ∼0.04 Td ⋅ s) presented at ISIs of 5–300 ms. Subject T.D.L.

  • View in gallery

    Bar graph of the mean (± SEM) area under the b-wave curves for single flashes (S = ∼0.04 Td ⋅ s and D = ∼0.08 Td ⋅ s) and flash pairs separated by 5–300 ms. Combined results for 5 subjects.

  • View in gallery

    Bar graph of the mean (±SEM) b-wave time-to-peak; Left panel plots results for single flashes (S = ∼0.04 Td ⋅ s and D = ∼0.08 Td ⋅ s) and short ISI (5–50 ms) flash pairs, measured from the onset of the first flash (white bars), as well as from the mid-point between the 1st and 2nd flashes (grey bars); The right panel plots results for the long ISI (100–300 ms) flash pairs, with the time-to-peak measurements referenced to the onset of each flash (1st and 2nd). Combined results for 5 subjects.

  • View in gallery

    Series of curves representing the full response to a standard flash, the residual response to the double intensity flash, and the residual response for flash pairs presented at ISIs of 5–300 ms. Subject T.D.L.

  • View in gallery

    Bar graphs of the mean (±SEM) amplitude for full standard flash responses (S = ∼0.04 Td ⋅ s), residual double intensity flash responses (D = ∼0.08 Td ⋅ s), and residual responses to flash pairs separated by 5–300 ms. Combined results for 5 subjects.

  • View in gallery

    Subjects’ perceptions of flash pairs for ISI ranging from 5–300 ms. The CFF threshold occurred between 50–100 ms, where stimuli appeared fused on 50% of trials.


Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 21 21 4
Full Text Views 9 9 4
PDF Downloads 4 4 1
EPUB Downloads 0 0 0