Making Sense of Scents: The Colour and Texture of Odours

in Seeing and Perceiving
Restricted Access
Get Access to Full Text

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

The purpose of this study was to document colour and texture associations to odours using a variety of odours including both pleasant and unpleasant odours, some of which were likely to be unfamiliar. We asked non-synaesthetic adults (n=78) to make colour and shape/texture associations to 22 odours. A subset of the participants (n=41) smelled the odours a second time in order to identify them. Each odour stimulus was associated consistently to one or more specific colours and/or textures (all p’s < 0.01 by binomial probability statistics). Associations to the four odours that were identified accurately (cinnamon, lemon, peppermint and licorice) seemed to be based on learning/memory (e.g. lemon = yellow). The associations to the 18 odours that were not identified accurately are less likely to be based on learning/memory (e.g. ginger = black, rough, sharp; lavender = green, white, liquid, sticky). We speculate that sensory associations to odours, like those to pitch and letters (e.g. Mondloch and Maurer, 2004; Spector and Maurer, 2008), may result from the joint influence of learning and natural biases linking dimensions across sensory systems. Such links may reflect inherent neural organization that is modifiable with learning and that can manifest as cross-modal associations or synaesthetic percepts.

Making Sense of Scents: The Colour and Texture of Odours

in Seeing and Perceiving

Sections

References

Baron-CohenS.HarrisonJ.GoldsteinL. H.WykeM. (1993). Coloured speech perception: is synaesthesia what happens when modularity breaks down? Perception 22419426.

Baron-CohenS.BurtL.Smith-LaittanF.HarrisonJ.BoltonP. (1996). Synaesthesia: prevalence and familiarityPerception 2510731079.

BeckerC.ElliottM. A. (2006). Flicker-induced colour and form: interdependencies and relation to stimulation frequency and phaseConsciousness and Cognition 15175196.

BerlinB.KayP. (1969). Basic Colour Terms: Their Universality and Evolution. University of Berkeley PressBerkeley, CA, USA.

BrandG.MillotJ. L. (2001). Sex differences in human olfaction: between evidence and enigmaQtrly J. Exper. Psychol. 54B259270.

CalvertG.SpenceC.SteinB. (Eds) (2004). The Handbook of Multisensory Processes. MIT PressBoston, MA, USA.

ChreaC.ValentinD.Sulmont-RosséC.Hoang NguyenD.AbdiH. (2005). Semantic, typicality and odor representation: A cross-cultural studyChemical Senses 303749.

CytowicR. E. (2002). Synesthesia: A Union of the Senses. MIT PressCambridge, MA, USA.

DaltonP.DoolittleN.NagataH.BreslinP. A. S. (2000). The merging of the senses: integration of subthreshold taste and smellNature Neurosci. 3431432.

DayS. (2001). Trends in synaesthetically coloured graphemes and phonemes. Retrieved September 20 2004 www.trismegistos.com/iconicityinlanguage/articles/day.

DayS. (2005). Some demographic and sociocultural aspects of synaesthesia in: Synaesthesia: Perspective from Cognitive NeuroscienceRobertsonL. C.SagivN. (Eds) pp.  3233. Oxford University PressOxford, UK.

DematteM. L.SanabriaD.SpenceC. (2006a). Cross-modal association between odors and colorsChemical Senses 31531538.

DematteM. L.SanabriaD.SugarmanR.SpenceC. (2006b). Cross-modal interactions between olfaction and touchChemical Senses 31291300.

DematteM. L.SanabriaD.SpenceC. (2009). Olfactory discrimination: when vision matters? Chemical Senses 34103109.

EngenT. (1972). The effect of expectation on judgments of odourActa Psychologica 36450458.

EhrlichmanH.BastoneL. (1992). Olfaction and emotion in: Science of OlfactionSerbyM. J.ChoborK. L. (Eds). Springer-VerlagNew York, USA.

FrancisS.RollsE. T.BowtellR.McGloneF.O’DohertyJ.BrowningA.ClareS.SmithE. (1999). The representation of pleasant touch in the brain and its relation with taste and olfactory areasNeuroreport 10453459.

GhazanfarA. A.SchroederC. E. (2006). Is neocortex essentially multisensory? Trends Cognit. Sci. 10278285.

GilbertA. N.MartinR.KempS. E. (1996). Cross-modal correspondence between vision and olfaction: The color of smellsAmer. J. Psychol. 109335351.

GottfriedJ. A.DolanR. J. (2003). The nose smells what the eye sees: cross-modal visual facilitation of human olfactory perceptionNeuron 39379386.

HollinsM.FaldowskiR.RaoS.YoungF. (1993). Perceptual dimensions of tactile surface texture: A multidimensional scaling analysisAttention Perception Psychophysics 54697705.

HurlbertA. C.LingY. L. (2007). Biological components of sex differences in color preferenceCurr. Biol. 17623625.

HuttenlocherP. R. (1994). Synaptogenesis in human cerebral cortex in: Human Behavior and the Developing BrainDawsonG.FischerK. (Eds) pp.  137152. GuildfordNew York, USA.

Kai-MingG. F.JohnstonT. A.AnkoorS. S.ArnoldL.SmileyJ.HackettT. A.GarraghtyP. E.SchroederC. E. (2003). Auditory cortical neurons respond to somatosensory stimulationJ. Neurosci. 2375107515.

KempS. E.GilbertA. N. (1997). Odour intensity and lightness are correlated sensory dimensionsAmer. J. Psychol. 1103546.

KennettS.TaylorC. M.HaggardP. (2001). Non-informative vision improves the spatial resolution of touch in humansCurr. Biol. 1111881191.

MarksL. E. (1974). On associations of light and sound: the mediation of brightness, pitch, and loudnessAmer. J. Psychol. 87173188.

MarksL. E. (1975). On coloured-hearing synaesthesia: cross-modal translations of sensory dimensionsPsycholog. Bull. 82303331.

MarksL. E. (1987). On cross-modal similarity: auditory–visual interactions in speeded discriminationJ. Exper. Psychol.: Human Percept. Perform. 13384394.

MarksL. E. (1989). On cross-modal similarity: the perceptual structure of pitch, loudness, and brightnessJ. Exper. Psychol.: Human Percept Perform. 15586602.

MaurerD.PathmanT.MondlochC. (2006). The shape of boubas: sound–shape correspondences in toddlers and adultsDevelopment. Sci. 9316322.

MolholmS.RitterW.JavittD. C.FoxeJ. J. (2004). Multisensory visual-object recognition in humans: a high-density electrical mapping studyCerebral Cortex 14452465.

MondlochC.MaurerD. (2004). Do small white balls squeak? Pitch–object correspondences in young childrenCognit. Affect. Behav. Neurosci. 4133136.

MoriK.NagaoH.YoshiharaY. (1999). The olfactory bulb: coding and processing of odor molecule informationScience 286711715.

MorrotG.BrochetF.DubourdieuD. (2001). The colour of odoursBrain Language 79309320.

NevilleH. (1995). Developmental specificity in neurocognitive development in humans in: The Cognitive NeurosciencesGazzanigaM. (Ed.) pp.  219231. BradfordCambridge, MA, USA.

NikolieD.LichtiP.SingerW. (2007). Colour opponency in synaesthetic experiencesPsycholog. Sci. 18481486.

OdgaardE. C.AriehY.MarksL. E. (2004). Brighter noise: sensory enhancement of perceived loudness by concurrent visual stimulationCognit. Affect. Behav. Neurosci. 4127132.

PalmerS. E.SchlossK. B. (2010). An ecological valence theory of human color preferenceProc. Nat. Acad. Sci. 10788778882.

Pascual-LeoneA.HamiltonR. (2001). The metamodal organization of the brainProg. Brain Res. 134427445.

PicardD.DacremontD.ValentinD.GiboreauA. (2003). Perceptual dimensions of tactile texturesActa Psychologica 114165184.

RamachandranV. S.HubbardE. M. (2001). Synesthesia — A window into perception, thought, and languageJ. Conciousness Studies 12334.

RaoA. R.LohseG. L. (1996). Towards a texture naming system: Identifying relevant dimensions of textureVision Research 3616491669.

RichA. N.BradshawJ. L.MattingleyJ. B. (2005). A systematic, large-scale systematic study of synaesthesia: implications for the role of early experience in lexical-colour associationsCognition 985384.

ShamsL.KamitaniY.ShimojoS. (2000). Illusions. What you see is what you hearNature 408788.

ShamsL.KamitaniY.ThompsonS.ShimojoS. (2001). Sound alters visual evoked potentials in humansNeuroreport 1238493852.

SimnerJ. (2007). Beyond perception: synaesthesia as a psycholinguistic phenomenonTrends Cognit. Sci. 112329.

SimnerJ.WardJ.LanzM.JansariA.NoonanK.GloverL.OakleyD. (2005). Non-random associations of graphemes to colours in the synaesthestic and non-synaesthetic populationsCognit. Neuropsychol. 22117.

SimnerJ.SagivN.MulvennaC.TsakanikosE.WitherbyS.FraserC.ScottK.WardJ. (2006). Synaesthesia: the prevalence of atypical cross-modal experiencesPerception 3510241033.

SpectorF.MaurerD. (2008). The colour of Os: Naturally-biased associations between shape and colourPerception 37841847.

SpectorF.MaurerD. (2011). The colours of the alphabet: naturally-biased associations between shape and colourJ. Exper. Psychol.: Human Percept. Perform. 17484495.

van CampenC.FrogerC. (2003). Personal profiles of colour synaesthesia: developing a testing method for artists and scientistsLeonardo 36291294.

VerhagenJ. V.EngelenL. (2006). The neurocognitive bases of human multimodal food perception: sensory integrationNeurosci. Biobehav. Rev. 30613650.

WardJ.SimnerJ. (2003). Lexical-gustatory synaesthesia: linguistic and conceptual factorsCognition 89237261.

WardJ.HuckstepB.TsakanikosE. (2006). Sound–colour synaesthesia: to what extent does it use cross-modal mechanisms common to us all? Cortex 42264280.

WolffP.MatsumiyaY.AbrohmsI. F.van VelzerC.LombrosoC. T. (1974). The effect of white noise on the somatosensory evoked responses in sleeping newborn infantsElectroencephal. Clin. Neurophysiol. 37269274.

YoshidaM. (1968). Dimensions of tactual impressionsJapan. Psychol. Res. 10123137.

ZellnerD. A.KautzM. A. (1990). Colour affects perceived odour intensityJ. Exper. Psychol.: Human Percept. Perform. 16391397.

ZellnerD. A.BartoliA. M.EckardR. (1991). Influence of colour on odour identification and liking ratingsAmer. J. Psychol. 104547561.

ZemachI.ChangS.TellerD. Y. (2007). Infant color vision: prediction of infants’ spontaneous color preferencesVision Research 4713681381.

Figures

  • View in gallery

    Overall frequency of each colour term. Bars represent the proportion of times each colour was chosen out of all colour responses in the data set. This figure is published in colour in the online version.

  • View in gallery

    a–v. Graphs of all colour associations to each odour. Dotted grey lines indicate the chance level of responses for each colour based on the probabilities in Fig. 1. Asterisks indicate colour choices to the odor that were significantly higher than chance. This figure is published in colour in the online version.

  • View in gallery

    Overall frequency of each texture term. Bars represent the proportion of times each texture was chosen out of all texture responses in the data set. This figure is published in colour in the online version.

  • View in gallery

    a–v. Graphs of all texture associations to each odour. Dotted grey lines indicate the chance level of responses for each texture based on the probabilities in Fig. 3. Asterisks indicate texture choices to the odor that were significantly higher than chance.

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 16 16 6
Full Text Views 2 2 2
PDF Downloads 0 0 0
EPUB Downloads 0 0 0