Timescale Invariance in the Pacemaker-Accumulator Family of Timing Models

In: Timing & Time Perception
View More View Less
  • 1 Oberlin College, Department of Neuroscience, 119 Woodland St., Oberlin, OH 44074, USA
  • 2 Royal Military College of Canada, Department of Mathematics & Computer Science PO Box 17000, Station Forces, Kingston, ON, K7K 7B4, Canada
  • 3 Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
  • 4 Princeton University, Princeton Neuroscience Institute, Green Hall, Washington Rd., Princeton, NJ 08540, USA
  • 5 Koç University, College of Social Science & Humanities, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Turkey
  • 6 Arizona State University, Department of Psychology, P.O. Box 871104, Tempe, AZ 85287-1104, USA

Pacemaker-accumulator (PA) systems have been the most popular kind of timing model in the half-century since their introduction by Treisman (). Many alternative timing models have been designed predicated on different assumptions, though the dominant PA model during this period — Gibbon and Church’s Scalar Expectancy Theory (SET) — invokes most of them. As in Treisman, SET’s implementation assumes a fixed-rate clock-pulse generator and encodes durations by storing average pulse counts; unlike Treisman’s model, SET’s decision process invokes Weber’s law of magnitude-comparison to account for timescale-invariant temporal precision in animal behavior. This is one way to deal with the ‘Poisson timing’ issue, in which relative temporal precision increases for longer durations, contrafactually, in a simplified version of Treisman’s model. First, we review the fact that this problem does not afflict Treisman’s model itself due to a key assumption not shared by SET. Second, we develop a contrasting PA model, an extension of Killeen and Fetterman’s Behavioral Theory of Timing that accumulates Poisson pulses up to a fixed criterion level, with pulse rates adapting to time different intervals. Like Treisman’s model, this time-adaptive, opponent Poisson, drift–diffusion model accounts for timescale invariance without first assuming Weber’s law. It also makes new predictions about response times and learning speed and connects interval timing to the popular drift–diffusion model of perceptual decision making. With at least three different routes to timescale invariance, the PA model family can provide a more compelling account of timed behavior than may be generally appreciated.

  • Ahrens M. B., Sahani M. (2008). Observers exploit stochastic models of sensory change to help judge the passage of time. Curr. Biol., 21, 17.

    • Search Google Scholar
    • Export Citation
  • Allan L. G., Gibbon J. (1991). Human bisection at the geometric mean. Learn. Motiv., 22, 3958.

  • Almeida R., Ledberg A. (2010). A biologically plausible model of time-scale invariant interval timing. J. Comput. Neurosci., 28, 155175.

    • Search Google Scholar
    • Export Citation
  • Balci F., Freestone D., Simen P., deSouza L., Cohen J. D., Holmes P. (2011). Optimal temporal risk assessment. Front. Neurosci., 5, 56.

  • Balci F., Gallistel C. R., Allen B. D., Frank K. M., Gibson J. M., Brunner D. (2009). Acquisition of peak responding: What is learned? Behav. Process., 80, 6775.

    • Search Google Scholar
    • Export Citation
  • Balsam P. D., Drew M. R., Gallistel C. R. (2010). Time and associative learning. Comp. Cogn. Behav. Rev., 5, 122.

  • Bizo L. A., Chu J. Y. M., Sanabria F., Killeen P. R. (2006). The failure of Weber’s law in time perception and production. Behav. Process., 71, 201210.

    • Search Google Scholar
    • Export Citation
  • Brown S., Heathcote A. (2008). The simplest complete model of choice response time: Linear ballistic accumulation. Cognit. Psychol., 57, 153178.

    • Search Google Scholar
    • Export Citation
  • Catania A. C. (1970). Reinforcement schedules and psychophysical judgments: A study of some temporal properties of behavior. In Schoenfeld W. N. (Ed.), The theory of reinforcement schedules (pp.  142). New York, NY: Appleton-Century-Crofts.

    • Search Google Scholar
    • Export Citation
  • Chhikara R. S., Folks L. (1989). The inverse Gaussian distribution: theory, methodology, and applications, Vol. 95. Boca Raton, FL: CRC.

    • Search Google Scholar
    • Export Citation
  • Church R. M., Deluty M. Z. (1977). Bisection of temporal intervals. J. Exp. Psychol., 3, 216228.

  • Church R. M., Lacourse D. M., Crystal J. D. (1998). Temporal search as a function of the variability of interfood intervals. J. Exp. Psychol. Anim. Behav. Process., 24, 291315.

    • Search Google Scholar
    • Export Citation
  • Church R. M., Meck W. H., Gibbon J. (1994). Application of scalar timing theory to individual trials. J. Exp. Psychol. Anim. Behav. Process., 20, 135155.

    • Search Google Scholar
    • Export Citation
  • Einstein A. (1905). Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys., 17, 549560.

    • Search Google Scholar
    • Export Citation
  • Feller W. (1968). An introduction to probability theory and its applications (3rd ed.). New York, NY: Wiley.

  • Gallistel C. R., Gibbon J. (2000). Time, rate and conditioning. Psychol. Rev., 107, 289344.

  • Gallistel C. R., King A., McDonald R. (2004). Sources of variability and systematic error in mouse timing behavior. J. Exp. Psychol. Anim. Behav. Process., 30, 316.

    • Search Google Scholar
    • Export Citation
  • Gardiner C. W. (2004). Handbook of stochastic methods (3rd ed.). New York, NY: Springer-Verlag.

  • Gibbon J. (1977). Scalar expectancy theory and Weber’s law in animal timing. Psychol. Rev., 84, 279325.

  • Gibbon J. (1992). Ubiquity of scalar timing with a Poisson clock. J. Math. Psychol., 35, 283293.

  • Gibbon J., Church R. M. (1984). Sources of variance in an information processing theory of timing. In Roitblat H. L., Bever T. G., Terrace H. S. (Eds.), Animal cognition (pp.  465488). Hillsdale, NJ: Lawrence Erlbaum Associates.

    • Search Google Scholar
    • Export Citation
  • Gibbon J., Church R. M. (1990). Representation of time. Cognition, 37, 2354.

  • Gibbon J., Church R. M., Meck W. H. (1984). Scalar timing in memory. In Gibbon J., Allan L. G. (Eds.), Annals of the New York Academy of Sciences: timing and time perception, Vol. 423 (pp.  5277). New York, NY: New York Academy of Sciences.

    • Search Google Scholar
    • Export Citation
  • Gibbon J., Malapani C., Dale C., Gallistel C. R. (1997). Toward a neurobiology of temporal cognition: Advances and challenges. Curr. Opin. Neurobiol., 7, 170184.

    • Search Google Scholar
    • Export Citation
  • Gold J. I., Shadlen M. N. (2007). The neural basis of decision making. Annu. Rev. Neurosci., 30, 535574.

  • Gooch C. M., Wiener M., Hamilton A. C., Coslett H. B. (2011). Temporal discrimination of sub- and suprasecond time intervals: A voxel-based lesion mapping analysis. Front. Integr. Neurosci., 5, 59.

    • Search Google Scholar
    • Export Citation
  • Grossberg S., Schmajuk N. A. (1989). Neural dynamics of adaptive timing and temporal discrimination during associative learning. Neural Netw., 2, 79102.

    • Search Google Scholar
    • Export Citation
  • Guilhardi P., Yi L., Church R. M. (2007). A modular theory of learning and performance. Psychon. Bull. Rev., 14, 543559.

  • Haß J., Blaschke S., Rammsayer T., Herrmann J. M. (2008). A neurocomputational model for optimal temporal processing. J. Comput. Neurosci., 25, 449464.

    • Search Google Scholar
    • Export Citation
  • Higham D. J. (2001). An algorithmic introduction to numerical simulation of stochastic differential equations. Soc. Ind. Appl. Math. Rev., 43, 525546.

    • Search Google Scholar
    • Export Citation
  • Jozefowiez J., Staddon J. E. R., Cerutti D. T. (2009). The behavioral economics of choice and interval timing. Psychol. Rev., 116, 519539.

    • Search Google Scholar
    • Export Citation
  • Karmarkar U. R., Buonomano D. V. (2007). Timing in the absence of clocks: Encoding time in neural network states. Neuron, 53, 427438.

    • Search Google Scholar
    • Export Citation
  • Killeen P. R. (2013). Absent without leave: A neuroenergetic theory of mind wandering. Front. Psychol., 4, 373.

  • Killeen P. R., Fetterman J. G. (1988). A behavioral theory of timing. Psychol. Rev., 95, 274295.

  • Killeen P. R., Fetterman J. G., Bizo L. A. (1997). Time’s causes. In Bradshaw C. M., Szabadi E. (Eds.), Time and behaviour: psychological and neurobehavioural analyses (pp.  79131). Amsterdam: Elsevier Science Publishers.

    • Search Google Scholar
    • Export Citation
  • Killeen P. R., Weiss N. A. (1987). Optimal timing and the Weber function. Psychol. Rev., 94, 455468.

  • Laming D. R. J. (1968). Information theory of choice reaction time. New York, NY: Wiley.

  • Link S. W. (1992). The wave theory of difference and similarity. Hillsdale, NJ: Lawrence Erlbaum Associates.

  • Luce R. D. (1986). Response times: their role in Inferring Elementary Mental Organization. New York NY: Oxford University Press.

  • Ludvig E. A., Sutton R. S., Kehoe E. J. (2008). Stimulus representation and the timing of reward-prediction errors. Neural Comput., 20, 30343054.

    • Search Google Scholar
    • Export Citation
  • Luzardo A., Ludvig E. A., Rivest F. (2013). An adaptive drift–diffusion model of interval timing dynamics. Behav. Process., 95, 9099.

  • Machado A. (1997). Learning the temporal dynamics of behavior. Psychol. Rev., 104, 241265.

  • Matell M., Meck W. H. (2004). Cortico-striatal circuits and interval timing: Coincidence detection of oscillatory processes. Cogn. Brain Res., 21, 139170.

    • Search Google Scholar
    • Export Citation
  • Meck W. H. (1996). Neuropharmacology of timing and time perception. Cogn. Brain Res., 3, 227242.

  • Meck W. H. (2006). Neuroanatomical localization of an internal clock: A functional link between mesolimbic, nigrostriatal, and mesocortical dopaminergic systems. Brain Res., 1109, 93107.

    • Search Google Scholar
    • Export Citation
  • Miall R. C. (1989). The storage of time intervals using oscillating neurons. Neural Comput., 1, 359371.

  • Ratcliff R. (1978). A theory of memory retrieval. Psychol. Rev., 85, 59108.

  • Ratcliff R. (1985). Theoretical interpretations of the speed and accuracy of positive and negative responses. Psychol. Rev., 92, 212225.

    • Search Google Scholar
    • Export Citation
  • Ratcliff R., Cherian A., Segraves M. A. (2003). A comparison of macaque behavior and superior colliculus neuronal activity to predictions from models of two choice decisions. J. Neurophysiol., 90, 13921407.

    • Search Google Scholar
    • Export Citation
  • Ratcliff R., Rouder J. N. (1998). Modeling response times for two-choice decisions. Psychol. Sci., 9, 347356.

  • Ratcliff R., Rouder J. N. (2000). A diffusion model account of masking in two-choice letter identification. J. Exp. Psychol. Hum. Percept. Perform., 26, 127140.

    • Search Google Scholar
    • Export Citation
  • Ratcliff R., Smith P. L. (2010). Perceptual discrimination in static and dynamic noise: The temporal relation between perceptual encoding and decision making. J. Exp. Psychol. Gen., 139, 7094.

    • Search Google Scholar
    • Export Citation
  • Rivest F., Bengio Y. (2011). Adaptive drift–diffusion process to learn time intervals. arXiv:1103.2382v1.

  • Roberts S. (1981). Isolation of an internal clock. J. Exp. Psychol. Anim. Behav. Process., 7, 242268.

  • Schrödinger E. (1915). Zur Theorie der Fall und Steigversuche an Teilchen mit Brownscher Bewegung. Phys. Z., 16, 289295.

  • Seung H. S. (1996). How the brain keeps the eyes still. Proc. Natl Acad. Sci. U.S.A., 93, 1333913344.

  • Shankar K., Howard M. (2012). A scale-invariant internal representation of time. Neural Comput., 24, 134193.

  • Simen P., Balci F., deSouza L., Cohen J. D., Holmes P. (2011a). Interval timing by long-range temporal integration. Front. Integr. Neurosci., 5, 28.

    • Search Google Scholar
    • Export Citation
  • Simen P., Balci F., deSouza L., Cohen J. D., Holmes P. (2011b). A model of interval timing by neural integration. J. Neurosci., 31, 92389253.

  • Smith P. L., Ratcliff R. (2004). Psychology and neurobiology of simple decisions. Trends Neurosci., 27, 161168.

  • Smoluchowsky M. V. (1915). Notiz über die Berechning der Brownschen Molkularbewegung bei des Ehrenhaft-millikanchen Versuchsanordnung. Phys. Z., 16, 318321.

    • Search Google Scholar
    • Export Citation
  • Staddon J. E. R. (2001). The new behaviorism. Philadelphia, PA: Psychology Press.

  • Staddon J. E. R., Chelaru I. M., Higa J. J. (2002). A tuned-trace theory of interval-timing dynamics. J. Exp. Anal. Behav., 77, 105124.

    • Search Google Scholar
    • Export Citation
  • Staddon J. E. R., Higa J. J. (1996). Multiple time scales in simple habituation. Psychol. Rev., 103, 720733.

  • Staddon J. E. R., Higa J. J. (1999a). Time and memory: Towards a pacemaker-free theory of interval timing. J. Exp. Anal. Behav., 71, 215251.

    • Search Google Scholar
    • Export Citation
  • Staddon J. E. R., Higa J. J. (1999b). The choose-short effect and trace models of timing. J. Exp. Anal. Behav., 72, 473478.

  • Stone M. (1960). Models for choice reaction time. Psychometrika, 25, 251260.

  • Telfeian A. E., Connors B. W. (1998). Layer-specific pathways for the horizontal propagation of epileptiform discharges in neocortex. Epilepsia, 39, 700708.

    • Search Google Scholar
    • Export Citation
  • Treisman M. (1963). Temporal discrimination and the indifference interval: Implications for a model of the ‘internal clock’. Psychol. Monogr., 77, 131.

    • Search Google Scholar
    • Export Citation
  • Treisman M. (1964). Noise and Weber’s Law: The discrimination of brightness and other dimensions. Psychol. Rev., 71, 314330.

  • Treisman M. (1966). A statistical decision model for sensory discrimination which predicts Weber’s law and other sensory laws: Some results of a computer simulation. Percept. Psychophys., 1, 203230.

    • Search Google Scholar
    • Export Citation
  • Treisman M. (1984). Temporal rhythms and cerebral rhythms. In Gibbon J., Allan L. (Eds.), Annals of the New York Academy of Sciences: timing and time perception, Vol. 423 (pp.  542565). New York, NY: New York Academy of Sciences.

    • Search Google Scholar
    • Export Citation
  • Treisman M., Cook N., Naish P. L. N., MacCrone J. K. (1992). The internal clock: Electroencephalographic evidence for oscillatory processes underlying time perception. Q. J. Exp. Psychol. A, 47, 241289.

    • Search Google Scholar
    • Export Citation
  • Treisman M., Faulkner A., Naish P. L. N., Brogan D. (1990). The internal clock: Evidence for a temporal oscillator underlying time perception with some estimates of its characteristic frequency. Perception, 19, 705743.

    • Search Google Scholar
    • Export Citation
  • Tuerlinckx F. (2004). The efficient computation of the cumulative distribution and probability density functions in the diffusion model. Behav. Res. Methods Instrum. Comput., 36, 702716.

    • Search Google Scholar
    • Export Citation
  • Usher M., McClelland J. L. (2001). The time course of perceptual choice: The leaky, competing accumulator model. Psychol. Rev., 108, 550592.

    • Search Google Scholar
    • Export Citation
  • Uttal W. R. (2008). Distributed neural systems: beyond the new phrenology. Cambridge, MA: Sloan Educational Publishing.

  • Wackermann J., Ehm W. (2006). The dual klepsydra model of internal time representation and time reproduction. J. Theor. Biol., 239, 482493.

    • Search Google Scholar
    • Export Citation
  • Wald A. (1947). Sequential analysis. New York, NY: Dover.

  • Wald A., Wolfowitz J. (1948). Optimum character of the sequential probability ratio test. Ann. Math. Stat., 19, 326339.

  • Wang X. J. (2002). Probabilistic decision making by slow reverberation in cortical circuits. Neuron, 36, 955968.

  • Wearden J. H., Bray S. (2001). Scalar timing without reference memory? Episodic temporal generalization and bisection in humans. Q. J. Exp. Psychol. B, 54, 289309.

    • Search Google Scholar
    • Export Citation

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 398 223 12
Full Text Views 190 32 3
PDF Downloads 24 13 2