Pacemaker-accumulator (PA) systems have been the most popular kind of timing model in the half-century since their introduction by Treisman (1963). Many alternative timing models have been designed predicated on different assumptions, though the dominant PA model during this period — Gibbon and Church’s Scalar Expectancy Theory (SET) — invokes most of them. As in Treisman, SET’s implementation assumes a fixed-rate clock-pulse generator and encodes durations by storing average pulse counts; unlike Treisman’s model, SET’s decision process invokes Weber’s law of magnitude-comparison to account for timescale-invariant temporal precision in animal behavior. This is one way to deal with the ‘Poisson timing’ issue, in which relative temporal precision increases for longer durations, contrafactually, in a simplified version of Treisman’s model. First, we review the fact that this problem does not afflict Treisman’s model itself due to a key assumption not shared by SET. Second, we develop a contrasting PA model, an extension of Killeen and Fetterman’s Behavioral Theory of Timing that accumulates Poisson pulses up to a fixed criterion level, with pulse rates adapting to time different intervals. Like Treisman’s model, this time-adaptive, opponent Poisson, drift–diffusion model accounts for timescale invariance without first assuming Weber’s law. It also makes new predictions about response times and learning speed and connects interval timing to the popular drift–diffusion model of perceptual decision making. With at least three different routes to timescale invariance, the PA model family can provide a more compelling account of timed behavior than may be generally appreciated.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Ahrens M. B., Sahani M. (2008). Observers exploit stochastic models of sensory change to help judge the passage of time. Curr. Biol., 21, 1–7.
Allan L. G., Gibbon J. (1991). Human bisection at the geometric mean. Learn. Motiv., 22, 39–58.
Almeida R., Ledberg A. (2010). A biologically plausible model of time-scale invariant interval timing. J. Comput. Neurosci., 28, 155–175.
Balci F., Freestone D., Simen P., deSouza L., Cohen J. D., Holmes P. (2011). Optimal temporal risk assessment. Front. Neurosci., 5, 56.
Balci F., Gallistel C. R., Allen B. D., Frank K. M., Gibson J. M., Brunner D. (2009). Acquisition of peak responding: What is learned? Behav. Process., 80, 67–75.
Balsam P. D., Drew M. R., Gallistel C. R. (2010). Time and associative learning. Comp. Cogn. Behav. Rev., 5, 1–22.
Bizo L. A., Chu J. Y. M., Sanabria F., Killeen P. R. (2006). The failure of Weber’s law in time perception and production. Behav. Process., 71, 201–210.
Brown S., Heathcote A. (2008). The simplest complete model of choice response time: Linear ballistic accumulation. Cognit. Psychol., 57, 153–178.
Catania A. C. (1970). Reinforcement schedules and psychophysical judgments: A study of some temporal properties of behavior. In Schoenfeld W. N. (Ed.), The theory of reinforcement schedules (pp. 1–42). New York, NY: Appleton-Century-Crofts.
Chhikara R. S., Folks L. (1989). The inverse Gaussian distribution: theory, methodology, and applications, Vol. 95. Boca Raton, FL: CRC.
Church R. M., Deluty M. Z. (1977). Bisection of temporal intervals. J. Exp. Psychol., 3, 216–228.
Church R. M., Lacourse D. M., Crystal J. D. (1998). Temporal search as a function of the variability of interfood intervals. J. Exp. Psychol. Anim. Behav. Process., 24, 291–315.
Church R. M., Meck W. H., Gibbon J. (1994). Application of scalar timing theory to individual trials. J. Exp. Psychol. Anim. Behav. Process., 20, 135–155.
Einstein A. (1905). Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys., 17, 549–560.
Feller W. (1968). An introduction to probability theory and its applications (3rd ed.). New York, NY: Wiley.
Gallistel C. R., Gibbon J. (2000). Time, rate and conditioning. Psychol. Rev., 107, 289–344.
Gallistel C. R., King A., McDonald R. (2004). Sources of variability and systematic error in mouse timing behavior. J. Exp. Psychol. Anim. Behav. Process., 30, 3–16.
Gardiner C. W. (2004). Handbook of stochastic methods (3rd ed.). New York, NY: Springer-Verlag.
Gibbon J. (1977). Scalar expectancy theory and Weber’s law in animal timing. Psychol. Rev., 84, 279–325.
Gibbon J. (1992). Ubiquity of scalar timing with a Poisson clock. J. Math. Psychol., 35, 283–293.
Gibbon J., Church R. M. (1984). Sources of variance in an information processing theory of timing. In Roitblat H. L., Bever T. G., Terrace H. S. (Eds.), Animal cognition (pp. 465–488). Hillsdale, NJ: Lawrence Erlbaum Associates.
Gibbon J., Church R. M. (1990). Representation of time. Cognition, 37, 23–54.
Gibbon J., Church R. M., Meck W. H. (1984). Scalar timing in memory. In Gibbon J., Allan L. G. (Eds.), Annals of the New York Academy of Sciences: timing and time perception, Vol. 423 (pp. 52–77). New York, NY: New York Academy of Sciences.
Gibbon J., Malapani C., Dale C., Gallistel C. R. (1997). Toward a neurobiology of temporal cognition: Advances and challenges. Curr. Opin. Neurobiol., 7, 170–184.
Gold J. I., Shadlen M. N. (2007). The neural basis of decision making. Annu. Rev. Neurosci., 30, 535–574.
Gooch C. M., Wiener M., Hamilton A. C., Coslett H. B. (2011). Temporal discrimination of sub- and suprasecond time intervals: A voxel-based lesion mapping analysis. Front. Integr. Neurosci., 5, 59.
Grossberg S., Schmajuk N. A. (1989). Neural dynamics of adaptive timing and temporal discrimination during associative learning. Neural Netw., 2, 79–102.
Guilhardi P., Yi L., Church R. M. (2007). A modular theory of learning and performance. Psychon. Bull. Rev., 14, 543–559.
Haß J., Blaschke S., Rammsayer T., Herrmann J. M. (2008). A neurocomputational model for optimal temporal processing. J. Comput. Neurosci., 25, 449–464.
Higham D. J. (2001). An algorithmic introduction to numerical simulation of stochastic differential equations. Soc. Ind. Appl. Math. Rev., 43, 525–546.
Jozefowiez J., Staddon J. E. R., Cerutti D. T. (2009). The behavioral economics of choice and interval timing. Psychol. Rev., 116, 519–539.
Karmarkar U. R., Buonomano D. V. (2007). Timing in the absence of clocks: Encoding time in neural network states. Neuron, 53, 427–438.
Killeen P. R. (2013). Absent without leave: A neuroenergetic theory of mind wandering. Front. Psychol., 4, 373.
Killeen P. R., Fetterman J. G. (1988). A behavioral theory of timing. Psychol. Rev., 95, 274–295.
Killeen P. R., Fetterman J. G., Bizo L. A. (1997). Time’s causes. In Bradshaw C. M., Szabadi E. (Eds.), Time and behaviour: psychological and neurobehavioural analyses (pp. 79–131). Amsterdam: Elsevier Science Publishers.
Killeen P. R., Weiss N. A. (1987). Optimal timing and the Weber function. Psychol. Rev., 94, 455–468.
Laming D. R. J. (1968). Information theory of choice reaction time. New York, NY: Wiley.
Link S. W. (1992). The wave theory of difference and similarity. Hillsdale, NJ: Lawrence Erlbaum Associates.
Luce R. D. (1986). Response times: their role in Inferring Elementary Mental Organization. New York NY: Oxford University Press.
Ludvig E. A., Sutton R. S., Kehoe E. J. (2008). Stimulus representation and the timing of reward-prediction errors. Neural Comput., 20, 3034–3054.
Luzardo A., Ludvig E. A., Rivest F. (2013). An adaptive drift–diffusion model of interval timing dynamics. Behav. Process., 95, 90–99.
Machado A. (1997). Learning the temporal dynamics of behavior. Psychol. Rev., 104, 241–265.
Matell M., Meck W. H. (2004). Cortico-striatal circuits and interval timing: Coincidence detection of oscillatory processes. Cogn. Brain Res., 21, 139–170.
Meck W. H. (1996). Neuropharmacology of timing and time perception. Cogn. Brain Res., 3, 227–242.
Meck W. H. (2006). Neuroanatomical localization of an internal clock: A functional link between mesolimbic, nigrostriatal, and mesocortical dopaminergic systems. Brain Res., 1109, 93–107.
Miall R. C. (1989). The storage of time intervals using oscillating neurons. Neural Comput., 1, 359–371.
Ratcliff R. (1978). A theory of memory retrieval. Psychol. Rev., 85, 59–108.
Ratcliff R. (1985). Theoretical interpretations of the speed and accuracy of positive and negative responses. Psychol. Rev., 92, 212–225.
Ratcliff R., Cherian A., Segraves M. A. (2003). A comparison of macaque behavior and superior colliculus neuronal activity to predictions from models of two choice decisions. J. Neurophysiol., 90, 1392–1407.
Ratcliff R., Rouder J. N. (1998). Modeling response times for two-choice decisions. Psychol. Sci., 9, 347–356.
Ratcliff R., Rouder J. N. (2000). A diffusion model account of masking in two-choice letter identification. J. Exp. Psychol. Hum. Percept. Perform., 26, 127–140.
Ratcliff R., Smith P. L. (2010). Perceptual discrimination in static and dynamic noise: The temporal relation between perceptual encoding and decision making. J. Exp. Psychol. Gen., 139, 70–94.
Rivest F., Bengio Y. (2011). Adaptive drift–diffusion process to learn time intervals. arXiv:1103.2382v1.
Roberts S. (1981). Isolation of an internal clock. J. Exp. Psychol. Anim. Behav. Process., 7, 242–268.
Schrödinger E. (1915). Zur Theorie der Fall und Steigversuche an Teilchen mit Brownscher Bewegung. Phys. Z., 16, 289–295.
Seung H. S. (1996). How the brain keeps the eyes still. Proc. Natl Acad. Sci. U.S.A., 93, 13339–13344.
Shankar K., Howard M. (2012). A scale-invariant internal representation of time. Neural Comput., 24, 134–193.
Simen P., Balci F., deSouza L., Cohen J. D., Holmes P. (2011a). Interval timing by long-range temporal integration. Front. Integr. Neurosci., 5, 28.
Simen P., Balci F., deSouza L., Cohen J. D., Holmes P. (2011b). A model of interval timing by neural integration. J. Neurosci., 31, 9238–9253.
Smith P. L., Ratcliff R. (2004). Psychology and neurobiology of simple decisions. Trends Neurosci., 27, 161–168.
Smoluchowsky M. V. (1915). Notiz über die Berechning der Brownschen Molkularbewegung bei des Ehrenhaft-millikanchen Versuchsanordnung. Phys. Z., 16, 318–321.
Staddon J. E. R. (2001). The new behaviorism. Philadelphia, PA: Psychology Press.
Staddon J. E. R., Chelaru I. M., Higa J. J. (2002). A tuned-trace theory of interval-timing dynamics. J. Exp. Anal. Behav., 77, 105–124.
Staddon J. E. R., Higa J. J. (1996). Multiple time scales in simple habituation. Psychol. Rev., 103, 720–733.
Staddon J. E. R., Higa J. J. (1999a). Time and memory: Towards a pacemaker-free theory of interval timing. J. Exp. Anal. Behav., 71, 215–251.
Staddon J. E. R., Higa J. J. (1999b). The choose-short effect and trace models of timing. J. Exp. Anal. Behav., 72, 473–478.
Stone M. (1960). Models for choice reaction time. Psychometrika, 25, 251–260.
Telfeian A. E., Connors B. W. (1998). Layer-specific pathways for the horizontal propagation of epileptiform discharges in neocortex. Epilepsia, 39, 700–708.
Treisman M. (1963). Temporal discrimination and the indifference interval: Implications for a model of the ‘internal clock’. Psychol. Monogr., 77, 1–31.
Treisman M. (1964). Noise and Weber’s Law: The discrimination of brightness and other dimensions. Psychol. Rev., 71, 314–330.
Treisman M. (1966). A statistical decision model for sensory discrimination which predicts Weber’s law and other sensory laws: Some results of a computer simulation. Percept. Psychophys., 1, 203–230.
Treisman M. (1984). Temporal rhythms and cerebral rhythms. In Gibbon J., Allan L. (Eds.), Annals of the New York Academy of Sciences: timing and time perception, Vol. 423 (pp. 542–565). New York, NY: New York Academy of Sciences.
Treisman M., Cook N., Naish P. L. N., MacCrone J. K. (1992). The internal clock: Electroencephalographic evidence for oscillatory processes underlying time perception. Q. J. Exp. Psychol. A, 47, 241–289.
Treisman M., Faulkner A., Naish P. L. N., Brogan D. (1990). The internal clock: Evidence for a temporal oscillator underlying time perception with some estimates of its characteristic frequency. Perception, 19, 705–743.
Tuerlinckx F. (2004). The efficient computation of the cumulative distribution and probability density functions in the diffusion model. Behav. Res. Methods Instrum. Comput., 36, 702–716.
Usher M., McClelland J. L. (2001). The time course of perceptual choice: The leaky, competing accumulator model. Psychol. Rev., 108, 550–592.
Uttal W. R. (2008). Distributed neural systems: beyond the new phrenology. Cambridge, MA: Sloan Educational Publishing.
Wackermann J., Ehm W. (2006). The dual klepsydra model of internal time representation and time reproduction. J. Theor. Biol., 239, 482–493.
Wald A. (1947). Sequential analysis. New York, NY: Dover.
Wald A., Wolfowitz J. (1948). Optimum character of the sequential probability ratio test. Ann. Math. Stat., 19, 326–339.
Wang X. J. (2002). Probabilistic decision making by slow reverberation in cortical circuits. Neuron, 36, 955–968.
Wearden J. H., Bray S. (2001). Scalar timing without reference memory? Episodic temporal generalization and bisection in humans. Q. J. Exp. Psychol. B, 54, 289–309.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 1607 | 258 | 45 |
Full Text Views | 360 | 19 | 1 |
PDF Views & Downloads | 264 | 35 | 2 |
Pacemaker-accumulator (PA) systems have been the most popular kind of timing model in the half-century since their introduction by Treisman (1963). Many alternative timing models have been designed predicated on different assumptions, though the dominant PA model during this period — Gibbon and Church’s Scalar Expectancy Theory (SET) — invokes most of them. As in Treisman, SET’s implementation assumes a fixed-rate clock-pulse generator and encodes durations by storing average pulse counts; unlike Treisman’s model, SET’s decision process invokes Weber’s law of magnitude-comparison to account for timescale-invariant temporal precision in animal behavior. This is one way to deal with the ‘Poisson timing’ issue, in which relative temporal precision increases for longer durations, contrafactually, in a simplified version of Treisman’s model. First, we review the fact that this problem does not afflict Treisman’s model itself due to a key assumption not shared by SET. Second, we develop a contrasting PA model, an extension of Killeen and Fetterman’s Behavioral Theory of Timing that accumulates Poisson pulses up to a fixed criterion level, with pulse rates adapting to time different intervals. Like Treisman’s model, this time-adaptive, opponent Poisson, drift–diffusion model accounts for timescale invariance without first assuming Weber’s law. It also makes new predictions about response times and learning speed and connects interval timing to the popular drift–diffusion model of perceptual decision making. With at least three different routes to timescale invariance, the PA model family can provide a more compelling account of timed behavior than may be generally appreciated.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 1607 | 258 | 45 |
Full Text Views | 360 | 19 | 1 |
PDF Views & Downloads | 264 | 35 | 2 |