In this experiment we explored the effect of music tempo on the perception of time. Musically trained and nontrained participants carried out a reproduction task with music clips of various durations and tempos. Results revealed that the reproduced durations were longer for fast-tempo music clips than for slow-tempo music clips of equal duration. In addition, short clips were more accurately reproduced compared to longer stimuli. Notably, the error in reproducing the duration of a stimulus was overall lower for musically trained than nontrained participants, but more so for short than long clips. Finally, the accuracy in estimating the duration of the music clips correlated positively with years of musical training, further suggesting that musical training is a critical variable for time estimation.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Baddeley, A. D., Thomson, N., & Buchanan, M. (1975). Word length and the structure of short-term memory. J. Verbal Learn. Verbal Behav., 14, 575–589. doi: 10.1016/S0022-5371(75)80045-4.
Baudouin, A., Vanneste, S., Isingrini, M., & Pouthas, V. (2006). Differential involvement of internal clock and working memory in the production and reproduction of duration: A study on older adults. Acta Psychol, 121, 285–296. doi: 10.1016/j.actpsy.2005.07.004.
Brown, S. W. (1995). Time, change, and motion: The effects of stimulus movement on temporal perception. Percept Psychophys, 57, 105–116. doi: 10.3758/bf03211853.
Chan, A. S., Ho, Y.-C., & Cheung, M.-C. (1998). Music training improves verbal memory. Nature, 396, 128. doi: 10.1038/24075.
Chen, Y.-H., Pizzolato, F., & Cesari, P. (2013). Observing expertise-related actions leads to perfect time flow estimations. PLoS One, 8, e55294. doi: 10.1371/journal.pone.0055294.
Church, R. M. (1984). Properties of the internal clock. Ann. N. Y. Acad. Sci., 423, 566–582. doi: 10.1111/j.1749–6632.1984.tb23459.x.
Droit-Volet, S., Ramos, D., Bueno, J. L. O., & Bigand, E. (2013). Music, emotion, and time perception: the influence of subjective emotional valence and arousal? Front Psychol, 4, 417. doi: 10.3389/fpsyg.2013.00417.
Elpidorou, A. (2018). The bored mind is a guiding mind: toward a regulatory theory of boredom. Phenomenol. Cogn. Sci., 17, 455–484. doi: 10.1007/s11097-017-9515-1.
Franklin, M. S., Sledge Moore, K., Yip, C.-Y., Jonides, J., Rattray, K., & Moher, J. (2008). The effects of musical training on verbal memory. Psychol. Music, 36, 353–365. doi: 10.1177/0305735607086044.
Gabriel, M. A. (1988). Boredom: Exploration of a developmental perspective. Clin. Soc. Work J., 16, 156–164. doi: 10.1007/BF00754447.
Gibbon, J., Church, R. M., & Meck, W. H. (1984). Scalar timing in memory. Trans. N. Y. Acad. Sci., 423, 52–77. doi: 10.1111/j.1749–6632.1984.tb23417.x.
Grivel, J., Bernasconi, F., Manuel, A. L., Murray, M. M., & Spierer, L. (2011). Dynamic calibration of our sense of time. Neuropsychologia, 49, 147–150. doi: 10.1016/j.neuropsychologia.2010.11.004.
Henry, L., (1994). The relationship between speech rate and memory span in children. Int. J. Behav. Dev., 17, 37–56. doi: 10.1177/016502549401700103.
Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (TEC): A framework for perception and action planning. Behav. Brain Sci., 24, 849–878. doi: 10.1017/S0140525X01000103.
Huntsinger, C. S., & Jose, P. E. (1991). A test of Gardner’s modularity theory: A comparison of short-term memory for digits and tones. Psychomusicology, 10, 3–17. doi: 10.1037/h0094145.
Kilgour, A. R., Jakobson, L. S., & Cuddy, L. L. (2000). Music training and rate of presentation as mediators of text and song recall. Mem. Cogn., 28, 700–710. doi: 10.3758/BF03198404.
Lejeune, H., & Wearden, J. H. (2009). Vierordt’s The Experimental Study of the Time Sense (1868) and its legacy. Eur. J. Cogn. Psychol., 21, 941–960. doi: 10.1080/09541440802453006.
Martin, M., Sadlo, G., & Stew, G. (2006). The phenomenon of boredom. Qual. Res. Psychol., 3, 193–211. doi: 10.1191/1478088706qrp066oa.
Mathôt, S., Schreij, D., & Theeuwes, J. (2012). OpenSesame: An open-source, graphical experiment builder for the social sciences. Behav. Res. Methods, 44, 314–324. doi: 10.3758/s13428-011-0168-7.
Morrongiello, B. A. (1992). Effects of training on children’s perception of music: A review. Psychol. Music, 20, 29–41. doi: 10.1177/0305735692201003.
Noulhiane, M., Mella, N., Samson, S., Ragot, R., & Pouthas, V. (2007). How emotional auditory stimuli modulate time perception. Emotion, 7, 697–704. doi: 10.1037/1528-3542.7.4.697.
Perbal, S., Droit-Volet, S., Isingrini, M., & Pouthas, V. (2002). Relationships between age-related changes in time estimation and age-related changes in processing speed, attention, and memory. Aging Neuropsychol Cogn, 9, 201–216. doi: 10.1076/anec.9.3.201.9609.
Plastira, M. N., & Avraamides, M. N. (2020). Distortions in time perception: how the production rate of linguistic stimuli influences the perception of elapsed time. Timing Time Percept, 8, 162–176. doi: 10.1163/22134468-20191173.
Prinz, W. (1997). Perception and action planning. Eur. J. Cogn. Psychol., 9, 129–154. doi; 10.1080/713752551.
Rammsayer, T., & Altenmüller, E. (2006). Temporal information processing in musicians and nonmusicians. Music Percept., 24, 37–48. doi: 10.1525/mp.2006.24.1.37.
Rattat, A.-C., & Droit-Volet, S. (2012). What is the best and easiest method of preventing counting in different temporal tasks? Behav. Res. Methods, 44, 67–80. doi: 10.3758/s13428-011-0135-3.
Repp, B. H & Knoblich, G. (2004). Perceiving action identity: how pianists recognize their own performances. Psychol. Sci., 15, 604–609. doi: 10.1111/j.0956-7976.2004.00727.x.
Sgouramani, H., & Vatakis, A. (2014). “Flash” dance: How speed modulates perceived duration in dancers and non-dancers. Acta Psychol., 147, 17–24. doi: 10.1016/j.actpsy.2013.06.009.
Sgouramani, H., Moutoussis, K., & Vatakis, A. (2019). Move still: the effects of implied and real motion on the duration estimates of dance steps. Perception, 48, 616–628. doi: 10.1177/0301006619854914.
Treisman, M. (1963). Temporal discrimination and the indifference interval: Implications for a model of the “internal clock”. Psychol. Monogr. Gen. Appl., 77, 1–31. doi: 10.1037/h0093864.
Wearden, J. (2005). Origins and development of internal clock theories of time. Psychol. Fr., 50, 7–25.
Zakay, D., & Block, R. A. (1995). An attentional-gate model of prospective time estimation. In M. Richelle, V. de Keyser, G. d’Ydewalle, & A. Vandierendonck (Eds), Time and the Dynamic Control of Behavior (pp. 167–178). Liège, Belgium: Université de Liege.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 673 | 416 | 32 |
Full Text Views | 36 | 22 | 3 |
PDF Views & Downloads | 67 | 45 | 1 |
In this experiment we explored the effect of music tempo on the perception of time. Musically trained and nontrained participants carried out a reproduction task with music clips of various durations and tempos. Results revealed that the reproduced durations were longer for fast-tempo music clips than for slow-tempo music clips of equal duration. In addition, short clips were more accurately reproduced compared to longer stimuli. Notably, the error in reproducing the duration of a stimulus was overall lower for musically trained than nontrained participants, but more so for short than long clips. Finally, the accuracy in estimating the duration of the music clips correlated positively with years of musical training, further suggesting that musical training is a critical variable for time estimation.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 673 | 416 | 32 |
Full Text Views | 36 | 22 | 3 |
PDF Views & Downloads | 67 | 45 | 1 |