Biological timing (including circadian and interval timing) has mainly focused on rigorously controlled laboratory experiments. There are relatively few studies looking into interval timing behaviors in the wild, which could be understandable due to the complexity of the experimental design but are definitely needed in order to comprehend the adaptive value of such behavior. In this opinion paper we review some of the literature regarding timing observations under field conditions, including reports from birds and mammals, and propose a call-to-action to think about the need of a more naturalistic interpretation of time production and perception, as well as the advantage of designing more ‘natural’ settings in the laboratory.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Agostino, P. V., Acosta, J., & Meck, W. H. (2017). Neurobiology of circadian and interval timing. In Encyclopedia of Life Sciences (eLS) – Neuroscience, Vol.8 (pp. 1–11). Chichester, UK: John Wiley & Sons. doi: 10.1002/9780470015902.a0027161.
Agostino, P. V., Golombek, D. A., & Meck, W. H. (2011). Unwinding the molecular basis of interval and circadian timing. Front. Integr. Neurosci., 5, 3389. doi: 10.3389/fnint.2011.00064.
Agostino, P. V., Lusk, N. A., Meck, W. H., Golombek, D. A., & Peryer, G. (2020). Daily and seasonal fluctuation in Tawny Owl vocalization timing. PLoS ONE, 15, p.e0231591. doi: 10.1371/journal.pone.0231591.
Bateson, M. (2003). Interval timing and optimal foraging. In W. H. Meck (Ed.), Functional and neural mechanisms of interval timing (pp. 113–141). Boca Raton, FL, USA: CRC Press.
Beale, A., Guibal, C., Tamai, T. K., Klotz, L., Cowen, S., Peyric, E., Reynoso, V. H., Yamamoto, Y., & Whitmore, D. (2013). Circadian rhythms in Mexican blind cavefish Astyanax mexicanus in the lab and in the field. Nat. Commun., 4, 2769. doi: 10.1038/ncomms3769.
Berberich, G. M., Berberich, M. B., Ellison, A.M., Grumpe, A., & Wöhler, C. (2019). First in situ identification of ultradian and infradian rhythms, and nocturnal locomotion activities of four colonies of red wood ants (Formica rufa-group). J. Biol. Rhythms, 34, 19–38. doi: 10.1177/0748730418821446.
Brunner, D., Kacelnik, A., & Gibbon, J. (1992). Optimal foraging and timing processes in the starling, Sturnus vulgaris: effect of inter-capture interval, Anim. Behav., 44, 597–613. doi: 10.1016/S0003-3472(05)80289-1.
Cain, M. S., Vul, E., Clark, K., & Mitroff, S. R. (2012). A Bayesian optimal foraging model of human visual search. Psychol. Sci., 23, 1047–1054. doi: 10.1177/0956797612440460.
Clayton, N. S., & Dickinson, A. (1998). Episodic-like memory during cache recovery by scrub jays. Nature, 395, 272–274. doi: 10.1038/26216.
Cody, M. L. (1971). Finch flocks in the Mohave Desert. Theor. Popul. Biol., 2, 142–158. doi: 10.1016/0040-5809(71)90012–8.
Crystal, J. D. (2006). Long-interval timing is based on a self-sustaining endogenous oscillator. Behav. Process., 72, 149–160. doi: 10.1016/j.beproc.2006.01.010.
Daan, S., & Koene, P. (1981). On the timing of foraging flights by oystercatchers, Haematopus ostralegus, on tidal mudflats. Neth. J. Sea Res., 15, 1–22. doi: 10.1016/0077-7579(81)90002–8.
Daan, S., Spoelstra, K., Albrecht, U., Schmutz, I., Daan, M., Daan, B., Rienks, F., Poletaeva, I., Dell’Omo, G., Vyssotski, A., & Lipp, H.-P. (2011). Lab mice in the field: unorthodox daily activity and effects of a dysfunctional circadian clock allele. J. Biol. Rhythms, 26, 118–129. doi: 10.1177/0748730410397645.
Davies, N. B. (1977). Prey selection and the search strategy of the spotted flycatcher (Muscicapa striata): A field study on optimal foraging, Anim. Behav., 25, 1016–1022, IN5, 1023–1033. doi: 10.1016/0003-3472(77)90053–7.
Davies, N. B., & Houston, A. I. (1981). Owners and satellites: the economics of territory defence in the pied wagtail, Motacilla alba. J. Anim. Ecol., 50, 157–180. doi: 10.2307/4038.
DeCoursey, P. J., Walker, J. K., & Smith, S. A. (2000). A circadian pacemaker in free-living chipmunks: essential for survival? J. Comp. Physiol. A, 186, 169–180. doi: 10.1007/s003590050017.
Derégnaucourt, S., Saar, S., & Gahr, M. (2012). Melatonin affects the temporal pattern of vocal signatures in birds. J. Pineal Res., 53, 245–258. doi: 10.1111/j.1600-079X.2012.00993.x.
Ehinger, K. A., & Wolfe, J. M. (2016). When is it time to move to the next map? Optimal foraging in guided visual search. Atten. Percept. Psychophys., 78, 2135–2151. doi: 10.3758/s13414-016-1128-1.
Falk, J. L. (1971). The nature and determinants of adjunctive behavior. Physiol. Behav., 6, 577–588. doi: 10.1016/0031-9384(71)90209-5.
Fargallo, J. A., Navarro-López, J., Palma-Granados, P., & Nieto, R. M. (2020). Foraging strategy of a carnivorous-insectivorous raptor species based on prey size, capturability and nutritional components. Sci. Rep., 10, 7583. doi: 10.1038/s41598-020-64504-4.
Florant, G. L., Hill, V., & Ogilvie, M. D. (2000). Circadian rhythms of body temperature in laboratory and field marmots (Marmota flaviventris). In G. Heldmaier, M. Klingenspor (Eds), Life in the cold (pp. 223–231). Berlin, Germany: Springer. doi: 10.1007/978-3-662-04162-8_24.
Gibb, M. J., Huckle, C. A., & Nuthall, R. (1998). Effect of time of day on grazing behavior by lactating dairy cows. Grass Forage Sci., 53, 41–46. doi: 10.1046/j.1365-2494.1998.00102.x.
Gibbon, J. (1977). Scalar expectancy theory and Weber’s law in animal timing, Psychol. Rev., 84, 279–325. doi: 10.1037/0033-295X.84.3.279.
Gibbon, J., Church, R. M., & Meck, W. H. (1984). Scalar timing in memory. In J. Gibbon and L. G. Allan (Eds), Timing and time perception (pp. 52–77), New York, NY, USA: The New York Academy of Sciences.
Golombek, D. A., Bussi, I. L., & Agostino, P. V. (2014). Minutes, days and years: molecular interactions among different scales of biological timing. Philos. Trans. R. Soc. B Biol. Sci., 369, 20120465. doi: 10.1098/rstb.2012.0465.
Henderson, J., Hurly, T. A., Bateson, M., & Healy, S. D. (2006). Timing in free-living rufous hummingbirds, Selasphorus rufus. Curr. Biol., 16, 512–515. doi: 10.1016/j.cub.2006.01.054.
Hills, T. (2003) Toward a unified theory of animal event timing. In W. H. Meck (Ed.), Functional and neural mechanisms of interval timing (pp. 77–111). Boca Raton, FL, USA: CRC Press.
Hodgson, J. (1982). Ingestive behaviour. In J. D. Leaver (Ed.), Herbage intake handbook (p. 113–138). Wallingford, UK: British Grassland Society.
Hut, R. A., Kronfeld-Schor, N., van der Vinne, V., & De la Iglesia, H. (2012). In search of a temporal niche: Environmental factors. Prog. Brain Res., 199, 281–304. doi: 10.1016/B978-0-444-59427-3.00017-4.
Izawa, T. (2012). Physiological significance of the plant circadian clock in natural field conditions. Plant Cell Environ., 35, 1729–1741. doi: 10.1111/j.1365-3040.2012.02555.x.
Jansen, R., Metzdorf, R., van der Roest, M., Fusani, L., ter Maat, A., & Gahr, M. (2005). Melatonin affects the temporal organization of the song of the zebra finch. FASEB J., 19, 848–850. doi: 10.1096/fj.04-2874fje.
Jochims, F., Soares, É. M., De Oliveira, L. B., Kuinchtner, B. C., Casanova, P. T., Marin, L., & De Quadros, F. L. (2020). Timing and duration of observation periods of foraging behavior in natural grasslands. Front. Vet. Sci., 7, 519698. doi: 10.3389/fvets.2020.519698.
Linnane, M. I., Brereton, A. J., & Giller, P. S. (2001). Seasonal changes in circadian grazing patterns of Kerry cows (Bos Taurus) in semi-feral conditions in Killarney National Park, Co. Kerry, Ireland. Appl. Anim. Behav. Sci., 71, 277–292. doi: 10.1016/S0168-1591(00)00188-X.
MacDonald, C. J., & Meck, W. H. (2005) Time flies and may also sing: cortico-striatal mechanisms of interval timing and birdsong. In W. H. Meck (Ed.), Functional and neural mechanisms of interval timing (pp. 393–418). Boca Raton, FL, USA: CRC Press.
Nagano, A. J., Kawagoe, T., Sugisaka, J., Honjo, M. N., Iwayama, K., & Kudoh, H. (2019). Annual transcriptome dynamics in natural environments reveals plant seasonal adaptation. Nat. Plants, 5, 74–83. doi: 10.1038/s41477-018-0338-z.
Ng, L., Garcia, J. E., Dyer, A. G., & Stuart‐Fox, D. (2020). The ecological significance of time sense in animals. Biol. Rev.. 96, 526–540. doi: 10.1111/brv.12665.
Richelle, M., & Lejeune, H. (1980). Time in animal behaviour. Oxford, UK: Pergamon Press.
Rijnsdorp, A., Daan, S., & Dijkstra, C. (1981 ). Hunting in the kestrel, Falco tinnunculus, and the adaptive significance of daily habits. Oecologia, 50, 391–406. doi: 10.1007/BF00344982.
Safaie, M., Jurado-Parras, M.-T., Sarno, S., Louis, J., Karoutchi, C., Petit, L. F., Pasquet, M. O., Eloy, C., & Robbe, D. (2020). Turning the body into a clock: Accurate timing is facilitated by simple stereotyped interactions with the environment. Proc. Natl Acad. Sci. U. S. A., 117, 13084–13093. doi: 10.1073/pnas.1921226117.
Stephens, D. W. & Krebs, J. R. (2019). Foraging theory. Princeton, NJ, USA: Princeton University Press. doi: 10.1515/9780691206790.
Tachinardi, P., Valentinuzzi, V. S., Oda, G. A., & Buck, C. L. (2017). The interplay of energy balance and daily timing of activity in a subterranean rodent: a laboratory and field approach. Physiol. Biochem. Zool., 90, 546–552. doi: 10.1086/693003.
Thorpe, C. M., & Wilkie, D. M. (2006). Properties of time-place learning. In E. A. Wasserman & T. R. Zentall (Eds.), Comparative cognition: experimental explorations of animal intelligence (pp. 229–245). Oxford, UK: Oxford University Press.
Tomotani, B. M., Flores, D. E. F. L., Tachinardi, P., Paliza, J. D., Oda, G. A., & Valentinuzzi, V. S. (2012). Field and laboratory studies provide insights into the meaning of day-time activity in a subterranean rodent (Ctenomys aff. knighti), the tuco-tuco. PLoS ONE, 7, e37918. doi: 10.1371/journal.pone.0037918.
Vasconcelos, M., de Carvalho, M. P., & Machado, A. (2017). Timing in animals: From the natural environment to the laboratory, from data to models. In J. Call, G. M. Burghardt, I. M. Pepperberg, C. T. Snowdon, & T. Zentall (Eds.), APA handbook of comparative psychology: Vol. 2 perception, learning, and cognition (pp. 509–534). Washington, DC, USA: American Psychological Association.
Wang, G., Harpole, C. E., Trivedi, A. K., & Cassone, V. M. (2012). Circadian regulation of bird song, call, and locomotor behavior by pineal melatonin in the zebra finch. J. Biol. Rhythms, 27, 145–155. doi: 10.1177/0748730411435965.
Wilson, M. P., & Keller, F. S. (1953). On the selective reinforcement of spaced responses. J. Comp. Physiol. Psychol., 46, 190. doi: 10.1037/h0057705.
Wyse, C. A., Zhang, X., McLaughlin, M., Biello, S. M., Hough, D., Bellingham, M., Curtis, A. M., Robinson, J. E., & Evans, N. P. (2018). Circadian rhythms of melatonin and behaviour in juvenile sheep in field conditions: Effects of photoperiod, environment and weaning. Physiol. Behav., 194, 362–370. doi: 10.1016/j.physbeh.2018.06.001.
Ydenberg, R. C. (2007). Provisioning. In D. W. Stephens, J. S. Brown & R. C. Ydenberg (Eds), Foraging — behavior and ecology (pp. 273–304). Chicago, IL, USA: University of Chicago Press.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 381 | 101 | 8 |
Full Text Views | 89 | 0 | 0 |
PDF Views & Downloads | 133 | 3 | 0 |
Biological timing (including circadian and interval timing) has mainly focused on rigorously controlled laboratory experiments. There are relatively few studies looking into interval timing behaviors in the wild, which could be understandable due to the complexity of the experimental design but are definitely needed in order to comprehend the adaptive value of such behavior. In this opinion paper we review some of the literature regarding timing observations under field conditions, including reports from birds and mammals, and propose a call-to-action to think about the need of a more naturalistic interpretation of time production and perception, as well as the advantage of designing more ‘natural’ settings in the laboratory.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 381 | 101 | 8 |
Full Text Views | 89 | 0 | 0 |
PDF Views & Downloads | 133 | 3 | 0 |