Retrospective and Prospective Views on the Role of the Hippocampus in Interval Timing and Memory for Elapsed Time

in Timing & Time Perception
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?


The overlap of neural circuits involved in episodic memory, relational learning, trace conditioning, and interval timing suggests the importance of hippocampal-dependent processes. Identifying the functional and neural mechanisms whereby the hippocampus plays a role in timing and decision-making, however, has been elusive. In this article we describe recent neurobiological findings, including the discovery of hippocampal ‘time cells’, dependency of duration discriminations in the minutes range on hippocampal function, and the correlation of hippocampal theta rhythm with specific features of temporal processing. These results provide novel insights into the ways in which the hippocampus might interact with the striatum in order to support both retrospective and prospective timing. Suggestions are also provided for future research on the role of the hippocampus in memory for elapsed time.

Retrospective and Prospective Views on the Role of the Hippocampus in Interval Timing and Memory for Elapsed Time

in Timing & Time Perception



AllenT. A.FortinN. J. (2013). The evolution of episodic memory. Proc. Natl Acad. Sci. USA1101037910386.

AllmanM. J.MeckW. H. (2012). Pathophysiological distortions in time perception and timed performance. Brain135656677.

AllmanM. J.TekiS.GriffithsT. D.MeckW. H. (in press). Properties of the internal clock: First- and second-order principles of subjective time. Annu. Rev. Psychol.65. doi:10.1146/annurev-psych-010213-115117.

BerkeJ. D.BreckJ. T.EichenbaumH. (2009). Striatal versus hippocampal representations during win-stay maze performance. J. Neurophysiol.10115751587.

BlockR. A.HancockP. A.ZakayD. (2010). How cognitive load affects duration judgments: A meta-analytic review. Acta Psychol.134330343.

BuhusiC. V.MeckW. H. (2005). What makes us tick? Functional and neural mechanisms of interval timing. Nat. Rev. Neurosci.6755765.

BuhusiC. V.MeckW. H. (2009). Relative time sharing: New findings and an extension of the resource allocation model of temporal processing. Philos. Trans. R. Soc. B36418751885.

BuhusiM.ScripaI.WilliamsC. L.BuhusiC. V. (2013). Impaired interval timing and spatial-temporal integration in mice deficient in CHL1, a gene associated with schizophrenia. Timing Time Percept.12138.

ChengR. K.WilliamsC. L.MeckW. H. (2008). Oscillatory bands, neuronal synchrony and hippocampal function: Implications of the effects of prenatal choline supplementation for sleep-dependent memory consolidation. Brain Res.1237176194.

CordesS.MeckW. H. (in press). Ordinal judgments in the rat: An understanding of ‘longer’ and ‘shorter’ for supra-second, but not sub-second, durations. J. Exp. Psychol. Gen. doi:10.1037/a0032439

CoullJ. T.ChengR. K.MeckW. H. (2011). Neuroanatomical and neurochemical substrates of timing. Neuropsychopharmacology36325.

CoullJ. T.HwangH. J.LeytonM.DagherA. (2013). Dopaminergic modulation of motor timing in healthy volunteers differs as a function of baseline DA precursor availability. Timing Time Percept.17798.

DeCoteauW. E.ThornC.GibsonD. J.CourtemancheR.MitraP.KubotaY.GraybielA. M. (2007a). Learning-related coordination of striatal and hippocampal theta rhythms during acquisition of a procedural maze task. Proc. Natl Acad. Sci. USA10456445649.

DeCoteauW. E.ThornC.GibsonD. J.CourtemancheR.MitraP.KubotaY.GraybielA. M. (2007b). Oscillations of local field potentials in the rat dorsal striatum during spontaneous and instructed behaviors. J. Neurophysiol.9738003805.

Droit-VoletS.FayolleS.LamotteM.GilS. (2013). Time, emotion and the embodiment of timing. Timing Time Percept.199126.

Droit-VoletS.MeckW. H. (2007). How emotions colour our perception of time. Trends Cogn. Sci.11504513.

DzirasaK.PhillipsH. W.SotnikovaT. D.SalahpourA.KumarS.GainetdinovR. R.CaronM. G.NicolelisM. A. (2010). Noradrenergic control of cortico-striato-thalamic and mesolimbic cross-structural synchrony. J. Neurosci.3063876397.

EichenbaumH. (2013). Memory on time. Trends Cogn. Sci.178188.

FellJ.AxmacherN. (2011). The role of phase synchronization in memory processes. Nat. Rev. Neurosci.12105118.

FouquetC.BabayanB. M.WatilliauxA.BontempiB.TobinC.Rondi-ReigL. (2013). Complementary roles of the hippocampus and the dorsomedial striatum during spatial and sequence-based navigation behavior. PLoS ONE8e67232.

GillP. R.MizumoriS. J. Y.SmithD. M. (2011). Hippocampal episode fields develop with learning. Hippocampus2112401249.

GuB.-M.LaubachM.MeckW. H. (submitted). Oscillatory mechanisms supporting interval timing and working memory in prefrontal-striatal-hippocampal circuits.

GuB.-M.MeckW. H. (2012). Neural oscillations and spiking activity in prefrontal-striatal-hippocampal circuits during temporal reproduction. Soc. Neurosci. Abstr.42 808.09.

HattoriM.SakataS. (in press). Brain electrophysiological activity correlates with temporal processing in rats. Behav. Process. doi:10.1016/j.beproc.2013.09.011

HeilbronnerS. R.MeckW. H. (2013). Dissociations between interval timing and intertemporal choice following administration of fluoxetine, cocaine, or methamphetamine. Behav. Process. doi:10.1016/j.beproc.2013.09.013

HenryM. J.HerrmannB. (2014). Low-frequency neural oscillations support dynamics attending in temporal context. Timing Time Percept.26286.

HowardM. W.EichenbaumH. (2013). The hippocampus, time, and memory across scales. J. Exp. Psychol. Gen. doi:10.1037/a0033621

JacobsN. S.AllenT. A.NguyenN.FortinN. J. (2013). Critical role of the hippocampus in memory for elapsed time. J. Neurosci.331388813893.

JonesC. R.JahanshahiM. (2014). Contributions of the basal ganglia to temporal processing: Evidence from Parkinson’s disease. Timing Time Percept.287127.

KrausB. J.RobinsonR. J.2ndWhiteJ. A.EichenbaumH.HasselmoM. E. (2013). Hippocampal “time cells”: Time versus path integration. Neuron7810901101.

LewisP. A.MeckW. H. (2012). Time and the sleeping brain. The Psychologist25594597.

LustigC.MatellM. S.MeckW. H. (2005). Not “just” a coincidence: Frontal-striatal synchronization in working memory and interval timing. Memory13441448.

MacDonaldC. J. (2013). Prospective and retrospective duration memory in the hippocampus: Is time in the foreground or background? Philos. Trans. R. Soc. B.

MacDonaldC. J.CarrowS.PlaceR.EichenbaumH. (2013). Distinct hippocampal time cell sequences represent odor memories in immobilized rats. J. Neurosci.331460714616.

MacDonaldC. J.ChengR. K.MeckW. H. (2012). Acquisition of “Start” and “Stop” response thresholds in peak-interval timing is differentially sensitive to protein synthesis inhibition in the dorsal and ventral striatum. Front. Integr. Neurosci.610.

MacDonaldC. J.LepageK. Q.EdenU. T.EichenbaumH. (2011). Hippocampal “time cells” bridge the gap in memory for discontiguous events. Neuron71737749.

MacDonaldC. J.MeckW. H. (2003). Cortico-striatal mechanisms of interval timing and bird song: Time flies and may also sing. In MeckW. H. (Ed.) Functional and Neural Mechanisms of Interval Timing (pp.  393418). Boca Raton, FL, USA: CRC Press.

MacDonaldC. J.MeckW. H. (2004). Systems-level integration of interval timing and reaction time. Neurosci. Biobehav. Rev.28747769.

MaggiS.GarbuginoL.HeiseI.NieusT.BalciF.WellsS.Tocchini-ValentiG. P.MandilloS.NolanP. M.TucciV. (2014). A cross-laboratory investigation of timing endophenotypes in mouse behavior. Timing Time Percept.23550.

MaguireE. A.MullallyS. L. (2013). The hippocampus: A manifesto for change. J. Exp. Psychol. Gen. doi:10.1037/a0033650

MankinE. A.SparksF. T.SlayyehB.SutherlandR. J.LeutgebS.LeutgebJ. K. (2012). Neuronal code for extended time in the hippocampus. Proc. Natl Acad. Sci. USA1091946219467.

MannsJ. R.HowardM. W.EichenbaumH. (2007). Gradual changes in hippocampal activity support remembering the order of events. Neuron56530540.

MatellM. S.MeckW. H. (2000). Neuropsychological mechanisms of interval timing behaviour. Bioessays2294103.

MatellM. S.MeckW. H. (2004). Cortico-striatal circuits and interval timing: Coincidence-detection of oscillatory processes. Cogn. Brain Res.21139170.

MeckW. H. (1988). Hippocampal function is required for feedback control of an internal clock’s criterion. Behav. Neurosci.1025460.

MeckW. H. (2002a). Choline uptake in the frontal cortex is proportional to the absolute error of a temporal memory translation constant in mature and aged rats. Learn. Motiv.3388104.

MeckW. H. (2002b). Distortions in the content of temporal memory: Neurobiological correlates. In FountainS. B.BunseyM. D.DanksJ. H.McBeathM. K. (Eds.) Animal Cognition and Sequential Behavior: Behavioral Biological and Computational Perspectives (pp.  175200). Boston, MA, USA: Kluwer Academic Press.

MeckW. H. (2005). Neuropsychology of timing and time perception. Brain Cogn.5818.

MeckW. H. (2006a). Frontal cortex lesions eliminate the clock speed effect of dopaminergic drugs on interval timing. Brain Res.1108157167.

MeckW. H. (2006b). Neuroanatomical localization of an internal clock: A functional link between mesolimbic, nigrostriatal, and mesocortical dopaminergic systems. Brain Res.110993107.

MeckW. H.BensonA. M. (2002). Dissecting the brain’s internal clock: How frontal-striatal circuitry keeps time and shifts attention. Brain Cogn.48195211.

MeckW. H.ChurchR. M.MatellM. S. (2013). Hippocampus, time, and memory: A retrospective analysis. Behav. Neurosci.127642654.

MeckW. H.ChurchR. M.OltonD. S. (1984). Hippocampus, time, and memory. Behav. Neurosci.98322.

MeckW. H.DoyèreV.GruartA. (2012). Interval timing and time-based decision making. Front. Integr. Neurosci.613.

MeckW. H.MacDonaldC. J. (2007). Amygdala inactivation reverses fear’s ability to impair divided attention and make time stand still. Behav. Neurosci.121707720.

MeckW. H.PenneyT. B.PouthasV. (2008). Cortico-striatal representation of time in animals and humans. Curr. Opin. Neurobiol.18145152.

MelgireM.RagotR.SamsonS.PenneyT. B.MeckW. H.PouthasV. (2005). Auditory/visual duration bisection in patients with left or right medial-temporal lobe resection. Brain Cogn.58119124.

MerchantH.HarringtonD. L.MeckW. H. (2013a). Neural basis of the perception and estimation of time. Annu. Rev. Neurosci.36313336.

MerchantH.PerezO.ZarcoW.GamezJ. (2013b). Interval tuning in the primate medial premotor cortex as a general timing mechanism. J. Neurosci.3390829096.

NadelL.PetersonM. A. (2013). The hippocampus: Part of an interactive posterior representational system spanning perceptual and memorial systems. J. Exp. Psychol. Gen. doi:10.1037/a0033690

NayaY.SuzukiW. (2011). Integrating ‘what’ and ‘when’ across the primate medial temporal lobe. Science333773776.

OnodaK.SakataS. (2006). An ERP study of temporal discrimination in rats. Behav. Process.71235240.

OnodaK.TakahashiE.SakataS. (2003). Event-related potentials in the frontal cortex, hippocampus, and cerebellum during a temporal discrimination task in rats. Cogn. Brain Res.17380387.

PastalkovaE.ItskovV.AmarasinghamA.BuzsakiG. (2008). Internally generated cell assembly sequences in the rat hippocampus. Science32113221327.

RaskinS. A.WoodsS. P.PoquetteA. J.McTaggartA. B.SethnaJ.WilliamsR. C.TrösterA. I. (2011). A differential deficit in time-versus event-based prospective memory in Parkinson’s disease. Neuropsychology25201209.

SakataS. (2006). Timing and hippocampal theta in animals. Rev. Neurosci.17157162.

SakataS.OnodaK. (2003). Electrophysiological correlates of interval timing. In MeckW. H. (Ed.) Functional and Neural Mechanisms of Interval Timing (pp.  339349). Boca Raton, FL, USA: CRC Press.

SakimotoY.TakedaK.OkadaK.HattoriM.SakataS. (2013). Transient decline in rat’s hippocampal theta power relates to inhibitory stimulus-reward association. Behav. Brain Res.246132138.

ShiZ.ChurchR. M.MeckW. H. (2013). Bayesian optimization of time perception. Trends Cogn. Sci. doi:10.1016/j.tics.2013.09.009

SquireL. R. (1992). Declarative and nondeclarative memory: Multiple brain systems supporting learning and memory. J. Cogn. Neurosci.4232243.

TamS. K.JenningsD. J.BonardiC. (2013). Dorsal hippocampal involvement in conditioned-response timing and maintenance of temporal information in the absence of the CS. Exp. Brain Res.227547559.

TortA. B. L.KramerM. A.ThornC.GibsonD. J.KubotaY.GraybielA. M. (2008). Dynamic cross-frequency couplings of local field potential oscillations in rat striatum and hippocampus during performance of a T-maze task. Proc. Natl Acad. Sci. USA1052051720522.

VidalakiV. N.HoM. Y.BradshawC. M.SzabadiE. (1999). Interval timing performance in temporal lobe epilepsy: Differences between patients with left and right hemisphere foci. Neuropsychologia3710611070.

WimmerG. E.ShohamyD. (2011). The striatum and beyond: Contributions of the hippocampus to decision making. In DelgadoM. R.PhelpsE. A.RobbinsT. W. (Eds.) Decision Making Affect and Learning: Attention and Performance XXIII (pp.  281309). Oxford, UK: Oxford University Press.

YinB.MeckW. H. (in press). Comparison of interval timing behaviour in mice following dorsal or ventral hippocampal lesions with mice having δ opioid receptor gene deletion. Philos. Trans. R. Soc. B.

YinB.TrogerA. B. (2011). Exploring the 4th dimension: Hippocampus, time, and memory revisited. Front. Integr. Neurosci.536.


Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 74 74 22
Full Text Views 57 57 42
PDF Downloads 7 7 5
EPUB Downloads 0 0 0