Low-Frequency Neural Oscillations Support Dynamic Attending in Temporal Context

In: Timing & Time Perception
View More View Less
  • 1 Max Planck Research Group ‘Auditory Cognition’, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1a, 04103 Leipzig, Germany

Purchase instant access (PDF download and unlimited online access):

€29.95$34.95

Behaviorally relevant environmental stimuli are often characterized by some degree of temporal regularity. Dynamic attending theory provides a framework for explaining how perception of stimulus events is affected by the temporal context within which they occur. However, the precise neural implementation of dynamic attending remains unclear. Here, we provide a suggestion for a potential neural implementation of dynamic attending by appealing to low-frequency neural oscillations. The current review will familiarize the reader with the basic theoretical tenets of dynamic attending theory, and review empirical work supporting predictions derived from the theory. The potential neural implementation of dynamic attending theory with respect to low-frequency neural oscillations will be outlined, covering stimulus processing in regular and irregular contexts. Finally, we will provide some more speculative connections between dynamic attending and neural oscillations, and suggest further avenues for future research.

  • Allman M. J., Meck W. H. (2012). Pathophysiological distortions in time perception and timed performance. Brain, 135, 656677.

  • Barnes R., Jones M. R. (2000). Expectancy, attention, and time. Cognitive Psychol., 41, 254311.

  • Bishop G. H. (1933). Cyclic changes in the excitability of the optic pathway of the rabbit. Am. J. Physiol., 103, 213224.

  • Block R. A., Zakay D., Hancock P. A. (1999). Developmental changes in human duration judgments: A meta-analytic review. Dev. Rev., 19, 183211.

    • Search Google Scholar
    • Export Citation
  • Bolger D., Trost W., Schön D. (2013). Rhythm implicitly affects orienting of attention across modalities. Acta Psychol., 142, 238244.

  • Brochard R., Abecasis D., Potter D., Ragot R., Drake C. (2003). The “ticktock” of our interval clock: Direct brain evidence of subjective accents in isochronous sequences. Psychol. Sci., 14, 362366.

    • Search Google Scholar
    • Export Citation
  • Brochard R., Tassin M., Zagar D. (2013). Got rhythm… for better and for worse. Cross-modal effects of auditory rhythm on visual word recognition. Cognition, 127, 214219.

    • Search Google Scholar
    • Export Citation
  • Buhusi C., Meck W. H. (2005). What makes us tick? Functional and neural mechanisms of interval timing. Nat. Rev. Neurosci., 6, 755765.

    • Search Google Scholar
    • Export Citation
  • Buhusi C., Meck W. H. (2009). Relative time sharing: New findings and an extension of the resource allocation model of temporal processing. Trans. R. Soc. Lond., 364, 18751885.

    • Search Google Scholar
    • Export Citation
  • Busch N. A., Dubois J., VanRullen R. (2009). The phase of ongoing EEG oscillations predicts visual perception. J. Neurosci., 29, 78697876.

    • Search Google Scholar
    • Export Citation
  • Busch N. A., vanRullen R. (2012). Spontaneous EEG oscillations reveal periodic sampling of visual attention. Proc. Natl Acad. Sci. USA, 109, 1604816053.

    • Search Google Scholar
    • Export Citation
  • Buzsaki G., Draguhn A. (2004). Neuronal oscillations in cortical networks. Science, 25, 19261929.

  • Canolty R. T., Knight R. T. (2012). The functional role of cross-frequency coupling. Trends Cogn. Sci., 14, 506515.

  • Church R. M. (2003). A concise introduction to scalar timing theory. In Meck W. H. (Ed.), Functional and neural mechanisms of interval timing (pp.  322). Boca Raton, FL: CRC Press.

    • Search Google Scholar
    • Export Citation
  • Coull J. T., Cheng R. K., Meck W. H. (2011). Neuroanatomical and neurochemical substrates of timing. Neuropsychopharmacology, 36, 325.

  • Cravo A. M., Rohenkohl G., Wyart V., Nobre A. C. (2013). Temporal expectation enhances contrast sensitivity by phase entrainment of low-frequency oscillations in visual cortex. J. Neurosci., 33, 40024010.

    • Search Google Scholar
    • Export Citation
  • Drake C., Botte M. C. (1993). Tempo sensitivity in auditory sequences: Evidence for a multiple-look model. Percept. Psychophys., 54, 277286.

    • Search Google Scholar
    • Export Citation
  • Drake C., Jones M. R., Baruch C. (2000). The development of rhythmic attending in auditory sequences: Attunement, referent period, focal attending. Cognition, 77, 251288.

    • Search Google Scholar
    • Export Citation
  • Drewing K., Aschersleben G., Li S.-C. (2006). Sensorimotor synchronization across the lifespan. Int. J. Behav. Dev., 30, 280287.

  • Fraisse P. (1982). Rhythm and tempo. In Deutsch D. (Ed.), The psychology of music (pp.  149180). New York: Academic Press.

  • Fujioka T., Trainor L. J., Large E. W., Ross B. (2009). Beta and gamma rhythms in human auditory cortex during musical beat processing. Ann. NY Acad. Sci., 1169, 8992.

    • Search Google Scholar
    • Export Citation
  • Fujioka T., Trainor L. J., Large E. W., Ross B. (2012). Internalized timing of isochronous sounds is represented in neuromagnetic Beta oscillations. J. Neurosci., 32, 17911802.

    • Search Google Scholar
    • Export Citation
  • Ghitza O. (2011). Linking speech perception and neurophysiology: Speech decoding guided by cascaded oscillators locked to the input rhythm. Front. Psychol., 2. doi:10.3389/fpsyg.2011.00103.

    • Search Google Scholar
    • Export Citation
  • Ghitza O., Giraud A.-L., Poeppel D. (2013). Neuronal oscillations and speech perception: Critical-band temporal envelopes are the essence. Front. Hum. Neurosci., 6. doi:10.3389/fnhum.2012.00340.

    • Search Google Scholar
    • Export Citation
  • Gibbon J. (1977). Scalar expectancy theory and Weber’s law in animal timing. Psychol. Rev., 84, 279325.

  • Gibbon J., Church R. M., Meck W. H. (1984). Scalar timing in memory. Ann. NY Acad. Sci., 423, 5277.

  • Gill P., Zhang J., Woolley S. M. N., Fremouw T., Theunissen F. E. (2006). Sound representation methods for spectro-temporal receptive field estimation. J. Comput. Neurosci., 21, 520.

    • Search Google Scholar
    • Export Citation
  • Giraud A.-L., Poeppel D. (2012). Cortical oscillations and speech processing: Emerging computational principles and operations. Nat. Neurosci., 15, 511517.

    • Search Google Scholar
    • Export Citation
  • Grondin S. (2001). From physical time to the first and second moments of psychological time. Psychol. Bull., 127, 2244.

  • Grondin S. (2010). Timing and time perception: A review of recent behavioral and neuroscience findings and theoretical directions. Atten. Percept. Psychophys., 72, 561582.

    • Search Google Scholar
    • Export Citation
  • Gu B. M., Cheng R. K., Yin B., Meck W. H. (2011). Quinpirole-induced sensitization to noisy/sparse periodic input: Temporal synchronization as a component of obsessive-compulsive disorder. Neuroscience, 179, 143150.

    • Search Google Scholar
    • Export Citation
  • Haegens S., Nacher V., Luna R., Romo R., Jensen O. (2011). Alpha-oscillations in the monkey sensorimotor network influence discrimination performance by rhythmical inhibition of neuronal spiking. Proc. Natl Acad. Sci. USA, 108, 1937719382.

    • Search Google Scholar
    • Export Citation
  • Henry M. J., Herrmann B. (2012). A precluding role of low-frequency oscillations for auditory perception in a continuous processing mode. J. Neurosci., 32, 1752517527.

    • Search Google Scholar
    • Export Citation
  • Henry M. J., Obleser J. (2012). Frequency modulation entrains slow neural oscillations and optimizes human listening behavior. Proc. Natl Acad. Sci. USA, 109, 2009520100.

    • Search Google Scholar
    • Export Citation
  • Ivry R. B., Spencer R. M. C. (2004). The neural representation of time. Curr. Opin. Neurobiol., 14, 225232.

  • Jensen O., Colgin L. (2007). Cross-frequency coupling between neuronal oscillations. Trends Cogn. Sci., 11, 267269.

  • Jones M. R. (1976). Time, our lost dimension: Toward a new theory of perception, attention, and memory. Psychol. Rev., 83, 323355.

  • Jones M. R. (2004). Attention and timing. In Neuhoff J. G. (Ed.), Ecological psychoacoustics (pp.  4985). San Diego, CA, USA: Elsevier, Inc.

    • Search Google Scholar
    • Export Citation
  • Jones M. R. (2008). Musical time. In Hallam S., Cross I., Thaut M. (Eds.), Oxford handbook of music psychology (pp.  8192). Oxford, UK: Oxford University Press.

    • Search Google Scholar
    • Export Citation
  • Jones M. R., Boltz M. (1989). Dynamic attending and responses to time. Psychol. Rev., 96, 459491.

  • Jones M. R., Johnston H. M., Puente J. (2006). Effects of auditory pattern structure on anticipatory and reactive attending. Cognitive Psychol., 53, 5996.

    • Search Google Scholar
    • Export Citation
  • Jones M. R., Moynihan H., MacKenzie N., Puente J. (2002). Temporal aspects of stimulus-driven attending in dynamic arrays. Psychol. Sci., 13, 313319.

    • Search Google Scholar
    • Export Citation
  • Jongsma M., Desain P., Honing H. (2004). Rhythmic context influences the auditory evoked potentials of musicians and nonmusicians. Biol. Psychol., 66, 129152.

    • Search Google Scholar
    • Export Citation
  • Klein J. M., Jones M. R. (1996). Effects of attentional set and rhythmic complexity on attending. Percept. Psychophys., 58, 3446.

  • Kotz S. A., Schwartze M. (2010). Cortical speech processing unplugged: A timely subcortico-cortical framework. Trends Cogn. Sci., 14, 392399.

    • Search Google Scholar
    • Export Citation
  • Lakatos P., Chen C.-M., O’Connell M. N., Mills A., Schroeder C. E. (2007). Neuronal oscillations and multisensory interactions in primary auditory cortex. Neuron, 53, 272292.

    • Search Google Scholar
    • Export Citation
  • Lakatos P., Karmos G., Mehta A. D., Ulbert I., Schroeder C. E. (2008). Entrainment of neuronal oscillations as a mechanism of attentional selection. Science, 320, 110113.

    • Search Google Scholar
    • Export Citation
  • Lakatos P., Musacchia G., O’Connell M. N., Falcher A. Y., Javitt D. C., Schroeder C. E. (2013). The spectrotemporal filter mechanism of auditory selective attention. Neuron, 77, 750761.

    • Search Google Scholar
    • Export Citation
  • Lakatos P., O’Connell M. N., Barczak A., Mills A., Javitt D. C., Schroeder C. E. (2009). The leading sense: Supramodal control of neurophysiological context by attention. Neuron, 64, 419430.

    • Search Google Scholar
    • Export Citation
  • Lakatos P., Shah A. S., Knuth K. H., Ulbert I., Karmos G., Schroeder C. E. (2005). An oscillatory hierarchy controlling neuronal excitability and stimulus processing in auditory cortex. J. Neurophysiol., 94, 19041911.

    • Search Google Scholar
    • Export Citation
  • Lange K. (2009). Brain correlates of early auditory processing are attenuated by expectations for time and pitch. Brain Cogn., 69, 127137.

    • Search Google Scholar
    • Export Citation
  • Lange K. (2010). Can a regular context induce temporal orienting to a target sound? Int. J. Psychophysiol., 78, 231238.

  • Large E. W. (2008). Resonating to musical rhythm: Theory and experiment. In Grondin S. (Ed.), Psychology of time (pp.  189231). Amsterdam: Emerald.

    • Search Google Scholar
    • Export Citation
  • Large E. W. (2010). Neurodynamics of music. In Jones M. R., Fay R. R., Popper A. N. (Eds.), Music perception (pp.  201231). New York, NY, USA: Springer.

    • Search Google Scholar
    • Export Citation
  • Large E. W., Jones M. R. (1999). The dynamics of attending: How people track time-varying events. Psychol. Rev., 106, 119159.

  • Leaver A. M., Rauschecker J. P. (2010). Cortical representation of natural complex sounds: Effects of acoustic features and auditory object category. J. Neurosci., 30, 76047612.

    • Search Google Scholar
    • Export Citation
  • Lisman J. E., Jensen O. (2013). The theta–gamma neural code. Neuron, 77, 10021016.

  • London J. (1995). Some examples of complex meters and their implications for models of metric perception. Music Percept., 13, 5977.

  • Machens C. K., Wehr M. S., Zador A. M. (2004). Linearity of cortical receptive fields measured with natural sounds. J. Neurosci., 24, 10891100.

    • Search Google Scholar
    • Export Citation
  • Martin T., Egly R., Houck J. M., Bish J. P., Barrera B. D., Lee C. D., Tesche C. D. (2005). Chronometric evidence for entrained attention. Percept. Psychophys., 67, 168184.

    • Search Google Scholar
    • Export Citation
  • Mathewson K. E., Gratton G., Fabiani M., Beck D. M., Ro T. (2009). To see or not to see: Prestimulus alpha phase predicts visual awareness. J. Neurosci., 29, 27252732.

    • Search Google Scholar
    • Export Citation
  • Matell M. S., Meck W. H. (2004). Cortico-striatal circuits and interval timing: Coincidence-detection of oscillatory processes. Cogn. Brain Res., 21, 139170.

    • Search Google Scholar
    • Export Citation
  • McAuley J. D. (1995). Perception of time as phase: Toward an adaptive-oscillator model of rhythmic pattern processing. Indiana University.

    • Search Google Scholar
    • Export Citation
  • McAuley J. D. (2010). Tempo and rhythm. In Jones M. R., Fay R. R., Popper A. N. (Eds.), Music perception (pp.  165199). New York, NY, USA: Springer.

    • Search Google Scholar
    • Export Citation
  • McAuley J. D., Jones M. R. (2003). Modeling effects of rhythmic context on perceived duration: A comparison of interval and entrainment approaches to short-interval timing. J. Exp. Psychol.-Human, 29, 11021125.

    • Search Google Scholar
    • Export Citation
  • McAuley J. D., Jones M. R., Holub S., Johnston H. M., Miller N. S. (2006). The time of our lives: Life span development of timing and event tracking. J. Exp. Psychol. Gen., 135, 348.

    • Search Google Scholar
    • Export Citation
  • McAuley J. D., Kidd G. R. (1998). Effect of deviations from temporal expectations on tempo discrimination of isochronous tone sequences. J. Exp. Psychol.-Human, 24, 17861800.

    • Search Google Scholar
    • Export Citation
  • Meck W. H. (1996). Neuropharmacology of timing and time perception. Cogn. Brain Res., 3, 227242.

  • Meck W. H., Penney T. B., Pouthas V. (2008). Cortico-striatal representation of time in animals and humans. Curr. Opin. Neurobiol., 18, 145152.

    • Search Google Scholar
    • Export Citation
  • Michon J. (1964). Studies on subjective duration I. Differential sensitivity in the perception of repeated temporal intervals. Acta Psychol., 22, 441450.

    • Search Google Scholar
    • Export Citation
  • Miller J. E., Carlson L. A., McAuley J. D. (2013). When what you hear influences when you see: Listening to an auditory rhythm influences the temporal allocation of visual attention. Psychol. Sci., 24, 1118.

    • Search Google Scholar
    • Export Citation
  • Miller N. S., McAuley J. D. (2005). Tempo sensitivity in isochronous tone sequences: The multiple-look model revisited. Percept. Psychophys., 67, 11501160.

    • Search Google Scholar
    • Export Citation
  • Nelken I., Rotman Y., Yosef O. B. (1999). Responses of auditory-cortex neurons to structural features of natural sounds. Nature, 397, 154157.

    • Search Google Scholar
    • Export Citation
  • Ng B. S. W., Schroeder T., Kayser C. (2012). A precluding but not ensuring role of entrained low-frequency oscillations for auditory perception. J. Neurosci., 32, 1226812276.

    • Search Google Scholar
    • Export Citation
  • Palmer C. (1997). Music performance. Annu. Rev. Psychol., 48, 115138.

  • Parncutt R. (1994). A perceptual model of pulse salience and metrical accent in musical rhythms. Music Percept., 11, 409464.

  • Picton T. W., John M. S., Dimitrijevic A., Purcell D. (2003). Human auditory steady-state responses. Int. J. Audiol., 42, 177219.

  • Quene H., Port R. F. (2005). Effects of timing regularity and metrical expectancy on spoken-word perception. Phonetica, 62, 113.

  • Redford M. A. (1999). An articulatory basis for the syllable. PhD thesis, The University of Texas at Austin.

  • Rees A., Green G. G. R., Kay R. H. (1986). Steady-state evoked responses to sinusoidally amplitude-modulated sounds recorded in man. Hearing Res., 23, 123133.

    • Search Google Scholar
    • Export Citation
  • Repp B. H. (2003). Rate limits in sensorimotor synchronization with auditory and visual sequences: the synchronization threshold and the benefits and costs of interval subdivision. J. Motor Behav., 35, 355.

    • Search Google Scholar
    • Export Citation
  • Repp B. H. (2005). Sensorimotor synchronization: A review of the tapping literature. Psychol. Bull. & Review, 12, 969992.

  • Repp B. H. (2006). Rate limits of sensorimotor synchronization. Cognitive Psychol., 2, 163181.

  • Rohenkohl G., Cravo A. M., Wyart V., Nobre A. C. (2012). Temporal expectation improves the quality of sensory processing. J. Neurosci., 32, 84248428.

    • Search Google Scholar
    • Export Citation
  • Saleh M., Reimer J., Penn R., Ojakangas C. L., Hatsapoulos N. G. (2010). Fast and slow oscillations in human primary motor cortex predict oncoming behaviorally relevant cues. Neuron, 65, 461471.

    • Search Google Scholar
    • Export Citation
  • Sarter M., Givens B., Bruno J. P. (2001). The cognitive neuroscience of sustained attention: Where top-down meets bottom-up. Brain Res. Rev., 35, 146160.

    • Search Google Scholar
    • Export Citation
  • Schroeder C. E., Lakatos P. (2009). Low-frequency neuronal oscillations as instruments of sensory selection. Tr. Neurosci., 32, 918.

  • Schroeder C. E., Lakatos P., Kajikawa Y., Partan S., Puce A. (2008). Neuronal oscillations and visual amplification of speech. Trends Cogn. Sci., 12, 106113.

    • Search Google Scholar
    • Export Citation
  • Schroeder C. E., Wilson D. A., Randman T., Scharfman H., Lakatos P. (2010). Dynamics of active sensing and perceptual selection. Curr. Opin. Neurobiol., 20, 172176.

    • Search Google Scholar
    • Export Citation
  • Schulze H. H. (1978). The detectability of local and global displacements in regular rhythmic patterns. Psychol. Res., 40, 173181.

  • Schwartze M., Keller P. E., Patel A. D., Kotz S. A. (2011a). The impact of basal ganglia lesions on sensorimotor synchronization, spontaneous motor tempo, and the detection of tempo change. Behav. Brain Res., 216, 685691.

    • Search Google Scholar
    • Export Citation
  • Schwartze M., Rothermich K., Schmidt-Kassow M., Kotz S. A. (2011b). Temporal regularity effects on pre-attentive and attentive processing of deviance. Biol. Psychol., 87, 146151.

    • Search Google Scholar
    • Export Citation
  • Snyder J. S., Large E. W. (2005). Gamma-band activity reflects the metric structure of rhythmic tone sequences. Cogn. Brain Res., 24, 117126.

    • Search Google Scholar
    • Export Citation
  • Stefanics G., Hangya B., Hernadi I., Winkler I., Lakatos P., Ulbert I. (2010). Phase entrainment of human delta oscillations can mediate the effects of expectation on reaction speed. J. Neurosci., 30, 1357813585.

    • Search Google Scholar
    • Export Citation
  • van Noorden L., Moelants D. (1999). Resonance in the perception of musical pulse. J. New Music Res., 28, 4366.

  • VanRullen R., Busch N. A., Drewes J., Dubno J. R. (2011). Ongoing EEG phase as a trial-by-trial predictor of perceptual and attentional variability. Front. Psychol., 2, 19.

    • Search Google Scholar
    • Export Citation
  • Volgushev M., Christiakova M., Singer W. (1998). Modification of discharge patterns of neocortical neurons by induced oscillations of the membrane potential. Neuroscience, 83, 1525.

    • Search Google Scholar
    • Export Citation
  • von Stein A., Samthein J. (2000). Different frequencies for different scales of cortical integration: From local gamma to long range alpha/theta synchronization. Int. J. Psychophysiol., 38, 301313.

    • Search Google Scholar
    • Export Citation
  • Will U., Berg E. (2007). Brain wave synchronization and entrainment to periodic acoustic stimuli. Neuroscience Lett., 424, 5560.

  • Zaehle T., Lenz D., Ohl F. W., Herrmann C. S. (2010). Resonance phenomena in the human auditory cortex: Individual resonance frequencies of the cerebral cortex determine electrophysiological responses. Exp. Brain Res., 203, 629635.

    • Search Google Scholar
    • Export Citation
  • Zakay D., Block R. A. (1996). The role of attention in time estimation processes. Adv. Psychol., 115, 143164.

  • Zanto T. P., Large E. W., Fuchs A., Kelso J. S. (2005). Gamma-band responses to perturbed auditory sequences: Evidence for synchronization of perceptual processes. Music Percept., 22, 531547.

    • Search Google Scholar
    • Export Citation
  • Zanto T. P., Snyder J. S., Large E. W. (2006). Neural correlates of rhythmic expectancy. Adv. Cogn. Psychol., 2, 221231.

  • 6

    See Giraud & Poeppel (2012), Ghitza (2011) or Ghitza, Giraud, & Poeppel (2013) for such a suggestion in the speech domain.

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 1419 579 53
Full Text Views 432 34 0
PDF Views & Downloads 88 38 0