Contributions of the Basal Ganglia to Temporal Processing: Evidence from Parkinson’s Disease

in Timing & Time Perception
No Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?


The motor and perceptual timing deficits documented in patients with Parkinson’s disease (PD) have heavily influenced the theory that the basal ganglia play an important role in temporal processing. This review is a systematic exploration of the findings from behavioural and neuroimaging studies of motor and perceptual timing in PD. In particular, we consider the influence of a variety of task factors and of patient heterogeneity in explaining the mixed results. We also consider the effect of basal ganglia dysfunction on the non-temporal cognitive factors that contribute to successful motor and perceptual timing. Although there is convincing evidence from PD that the basal ganglia are critical to motor and perceptual timing, further work is needed to characterize the precise contribution of this complex structure to temporal processing.

Contributions of the Basal Ganglia to Temporal Processing: Evidence from Parkinson’s Disease

in Timing & Time Perception



  • AlexanderG. E.DeLongM. R.StrickP. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci.9357381.

  • AllmanM. J.MeckW. H. (2012). Pathophysiological distortions in time perception and timed performance. Brain135656677.

  • ArtiedaJ.PastorM. A.LacruzF.ObesoJ. A. (1992). Temporal discrimination is abnormal in Parkinson’s disease. Brain115199210.

  • BarešM.LunguO. V.HusárováI.GescheidtT. (2010). Predictive motor timing performance dissociates between early diseases of the cerebellum and Parkinson’s disease. Cerebellum9124135.

  • BrownR. G.MarsdenC. D. (1991). Dual task performance and processing resources in normal subjects and patients with Parkinson’s disease. Brain114215231.

  • BuhusiC. V.MeckW. H. (2005). What makes us tick? Functional and neural mechanisms of interval timing. Nat. Rev. Neurosci.6755765.

  • CerasaA.HagbergG. E.PeppeA.BianciardiM.GioiaM.CostaA.Castriota-ScanderbegA.CaltagironeC.SabatiniU. (2006). Functional changes in the activity of cerebellum and frontostriatal regions during externally and internally timed movement in Parkinson’s disease. Brain Res. Bull.71259269.

  • ChaudhuriK. R.HealyD. G.SchapiraA. H. (2006). Non-motor symptoms of Parkinson’s disease: Diagnosis and management. Lancet Neurol.5235245.

  • ChaudhuriK. R.SchapiraA. H. (2009). Non-motor symptoms of Parkinson’s disease: Dopaminergic pathophysiology and treatment. Lancet Neurol.8464474.

  • ChengR. K.AliY. M.MeckW. H. (2007). Ketamine “unlocks” the reduced clock-speed effect of cocaine following extended training: Evidence for dopamine–glutamate interactions in timing and time perception. Neurobiol. Learn. Mem.88149159.

  • ClaassenD. O.JonesC. R.YuM.DirnbergerG.MaloneT.ParkinsonM.GiuntiP.KubovyM.JahanshahiM. (2013). Deciphering the impact of cerebellar and basal ganglia dysfunction in accuracy and variability of motor timing. Neuropsychologia51267274.

  • CollierG. L.OgdenR. T. (2001). Variance decomposition of tempo drift in isochronous rhythmic tapping. Ann. NY Acad. Sci.930405408.

  • ConteA.ModugnoN.LenaF.DispenzaS.GandolfiB.IezziE.FabbriniG.BerardelliA. (2010). Subthalamic nucleus stimulation and somatosensory temporal discrimination in Parkinson’s disease. Brain13326562663.

  • CoolsR.BarkerR. A.SahakianB. J.RobbinsT. W. (2001). Enhanced or impaired cognitive function in Parkinson’s disease as a function of dopaminergic medication and task demands. Cereb. Cortex1111361143.

  • CoullJ. T.ChengR. K.MeckW. H. (2011). Neuroanatomical and neurochemical substrates of timing. Neuropsychopharmacology36325.

  • CoullJ. T.HwangH. J.LeytonM.DagherA. (2012). Dopamine precursor depletion impairs timing in healthy volunteers by attenuating activity in putamen and supplementary motor area. J. Neurosci.321670416715.

  • CoullJ. T.NobreA. C. (2008). Dissociating explicit timing from temporal expectation with fMRI. Curr. Opin. Neurobiol.18137144.

  • DomellöfM. E.ElghE.ForsgrenL. (2011). The relation between cognition and motor dysfunction in drug-naive newly diagnosed patients with Parkinson’s disease. Movement Disord.2621832189.

  • DomellöfM. E.ForsgrenL.ElghE. (in press). Persistence of associations between cognitive impairment and motor dysfunction in the early phase of Parkinson’s disease. J. Neurol.

  • DrewM. R.FairhurstS.MalapaniC.HorvitzJ. C.BalsamP. D. (2003). Effects of dopamine antagonists on the timing of two intervals. Pharmacol. Biochem. Behav.75915.

  • DuchekJ. M.BalotaD. A.FerraroF. R. (1994). Component analysis of a rhythmic finger tapping task in individuals with senile dementia of the Alzheimer type and in individuals with Parkinson’s disease. Neuropsychology8218226.

  • DušekP.JechR.SiegerT.VymazalJ.RůžičkaE.WackermannJ.MuellerK. (2012). Abnormal activity in the precuneus during time perception in Parkinson’s disease: An fMRI study. PLoS One7e29635. doi:10.1371/journal.pone.0029635.

  • ElsingerC. L.RaoS.ZimbelmanJ. L.ReynoldsN. C.BlindauerK. A.HoffmannR. G. (2003). Neural basis for impaired time reproduction in Parkinson’s disease: An fMRI study. J. Int. Neuropsychol. Soc.910881098.

  • FahnS.EltonR. L. & members of the UPDRS Development Committee (1987). Unified Parkinson’s Disease rating scale. In FahnS.MarsdenC. D.CalneD. B.GoldsteinM. (Eds.) Recent developments in Parkinson’s disease (pp.  153164). Florham Park, NJ, USA: Macmillan Healthcare Information.

  • FilippopoulosP. C.HallworthP.LeeS.WeardenJ. H. (in press). Interference between auditory and visual duration judgments suggests a common code for time. Psychol. Res.

  • FiorioM.StanzaniC.RothwellJ. C.BhatiaK. P.MorettoG.FiaschiA.TinazziM. (2007). Defective temporal discrimination of passive movements in Parkinson’s disease. Neurosci. Lett.417312315.

  • FollettK. A.WeaverF. M.SternM.HurK.HarrisC. L.LuoP.MarksW. J. Jr.RothlindJ.SagherO.MoyC.PahwaR.BurchielK.HogarthP.LaiE. C.DudaJ. E.HollowayK.SamiiA.HornS.BronsteinJ. M.StonerG.StarrP. A.SimpsonR.BaltuchG.De SallesA.HuangG. D.RedaD. J. & CSP 468 Study Group (2012). Pallidal versus subthalamic deep-brain stimulation for Parkinson’s disease. New Engl. J. Med.36220772091.

  • FreemanJ. S.CodyF. W.SchadyW. (1993). The influence of external timing cues upon the rhythm of voluntary movements in Parkinson’s disease. J. Neurol. Neurosurg. Psychiat.5610781084.

  • GibbonJ. (1977). Scalar expectancy theory and Weber’s law in animal timing. Psychol. Rev.84279325.

  • GibbonJ.ChurchR. M.MeckW. H. (1984). Scalar timing in memory. Ann. NY Acad. Sci.4235277.

  • GibbonJ.MalapaniC.DaleC. L.GallistelC. R. (1997). Toward a neurobiology of temporal cognition: Advances and challenges. Curr. Opin. Neurobiol.7170184.

  • GothamA. M.BrownR. G.MarsdenC. D. (1988). Frontal’ cognitive function in patients with Parkinson’s disease ‘on’ and ‘off’ levodopa. Brain111299321.

  • GrahamJ. M.SagarH. J. (1999). A data-driven approach to the study of heterogeneity in idiopathic Parkinson’s disease: Identification of three distinct syptypes. Movement Disord.141020.

  • GrahnJ. A.BrettM. (2009). Impairment of beat-based rhythm discrimination in Parkinson’s disease. Cortex455461.

  • GuB.-M.JurkowskiA. J.LakeJ. I.MalapaniC.MeckW. H. (in press). Bayesian models of interval timing and distortions in temporal memory as a function of Parkinson’s disease and dopamine-related error processing. In VatakisA.AllmanM. J. (Eds.) Time distortions in mind: temporal processing in clinical populations. Leiden, The Netherlands: Brill.

  • GuehlD.BurbaudP.LorenziC.RamosC.BioulacB.SemalC.DemanyL. (2008). Auditory temporal processing in Parkinson’s disease. Neuropsychologia4623262335.

  • HarringtonD. L.CastilloG. N.GreenbergP. A.SongD. D.LessigS.LeeR. R.RaoS. M. (2011). Neurobehavioural mechanisms of temporal processing deficits in Parkinson’s disease. PLoS One6e17461. doi:10.1371/journal.pone.0017461.

  • HarringtonD. L.HaalandK. Y.HermanowiczN. (1998). Temporal processing in the basal ganglia. Neuropsychology12312.

  • HellströmA.LangH.PortinR.RinneJ. (1997). Tone duration discrimination in Parkinson’s disease. Neuropsychologia35737740.

  • HintonS. C.HarringtonD. L.BinderJ. R.DurgerianS.RaoS. M. (2004). Neural systems supporting timing and chronometric counting: An fMRI study. Cognitive Brain Res.21183192.

  • HintonS. C.MeckW. H. (2004). Frontal-striatal circuitry activated by human peak-interval timing in the supra-seconds range. Cognitive Brain Res.21171182.

  • HintonS. C.RaoS. M. (2004). One-thousand one… one-thousand two…”: Chronometric countring violates the scalar property in interval timing. Psychonom. Bull. Rev.112430.

  • HoehnM.YahrM. (1967). Parkinsonism: Onset, progression and mortality. Neurology17427442.

  • HusárováI.LunguO. V.MarečekR.MiklM.GescheidtT.KrupaP.BarešM. (2011). Functional imaging of the cerebellum and basal ganglia during motor predictive motor timing in early Parkinson’s disease. J. Neuroimaging. doi:10.1111/j.1552-6569.2011.00663.x.

  • IvryR. B. (1996). The representation of temporal information in perception and motor control. Curr. Opin. Neurobiol.6851857.

  • IvryR. B.KeeleS. W. (1989). Timing functions of the cerebellum. J. Cognitive Neurosci.1136152.

  • JahanshahiM.JonesC. R. G.DirnbergerG.FrithC. D. (2006). The substantia nigra pars compacta and temporal processing. J. Neurosci.261226612273.

  • JahanshahiM.WilkinsonL.GahirH.DharmindaA.LagnadoD. A. (2010a). Medication impairs probailistic classification learning in Parkinson’s disease. Neuropsychologia4810961103.

  • JahanshahiM.JonesC. R. G.ZijlmansJ.KatzenschlagerR.LeeL.QuinnN.FrithC. D.LeesA. J. (2010b). Dopaminergic modulation of striato-frontal connectivity during motor timing in Parkinson’s disease. Brain133727745.

  • JänckeL.SpechtK.MirzazadeS.LooseR.HimmelbachM.LutzK.ShahN. J. (1998). A parametric analysis of the ‘rate effect’ in the sensorimotor cortex: A functional magnetic resonance imaging analysis in human subjects. Neurosci. Lett.2523740.

  • JankovicJ.McDermottM.CarterJ.GauthierS.GoetzC.GolbeL.HuberS.KollerW.OlanowC.ShoulsonI.SternM.TannerC.WeinerA. & Parkinson Study Group (1990). Variable expression of Parkinson’s disease: A base-line analysis of the DATATOP cohort. Neurology4015291534.

  • JonesC. R. G.ClaassenD. O.MinhongY.SpiesJ. R.MaloneT.DirnbergerG.JahanshahiM.KubovyM. (2011). Modeling accuracy and variability of motor timing in treated and untreated Parkinson’s disease and healthy controls. Frontiers Integrat. Neurosci.581. doi:10.3389/fnint.2011.00081.

  • JonesC. R. G.JahanshahiM. (2009). The substantia nigra, the basal ganglia, dopamine and temporal processing. J. Neural Transm.73161171.

  • JonesC. R. G.JahanshahiM. (2011). Dopamine modulates striato-frontal functioning during temporal processing. Frontiers Integrat. Neurosci.570. doi:10.3389/fnint.2011.00070.

  • JonesC. R. G.MaloneT. J.DirnbergerG.EdwardsM.JahanshahiM. (2008). Basal ganglia, dopamine and temporal processing: Performance on three timing tasks on and off medication in Parkinson’s disease. Brain Cognition683041.

  • JoundiR. A.BrittainJ. S.GreenA. L.AzizT. Z.JenkinsonN. (2012). High-frequency stimulation of the subthalamic nucleus selectively decreases central variance of rhythmic finger tapping in Parkinson’s disease. Neuropsychologia5024602466.

  • KeeleS. W.PokornyR. A.CorcosD. M.IvryR. (1985). Do perception and motor production share common timing mechanisms: A correctional analysis. Acta Psychol.60173191.

  • KehagiaA. A.BarkerR. A.RobbinsT. W. (2010). Neuropsychological and clinical heterogeneity of cognitive impairment and dementia in patients with Parkinson’s disease. Lancet Neurol.912001213.

  • KesslerJ.MarkowitschH. J.DenzlerP. (2000). Mini-Mental-Status-Test (MMST). Göttingen: Beltz-Test GmbH.

  • KochG.BrusaL.CaltagironeC.OliveriM.PeppeA.TiraboschiP.StanzioneP. (2004). Subthalamic deep brain stimulation improves time perception in Parkinson’s disease. NeuroReport1510711073.

  • KochG.BrusaL.OliveriM.StanzioneP.CaltagironeC. (2005). Memory for time intervals is impaired in left hemi-Parkinson patients. Neuropsychologia4311631167.

  • KochG.CostaA.BrusaL.PeppeA.GattoI.TorrieroS.Lo GerfoE.SalernoS.OliveriM.CarlesimoG. A.CaltagrioneC. (2008). Impaired reproduction of second but not millisecond time intervals in Parkinson’s disease. Neuropsychologia4613051313.

  • LakeJ. I.MeckW. H. (2013). Differential effects of amphetamine and haloperidol on temporal reproduction: Dopaminergic regulation of attention and clock speed. Neuropsychologia51284292.

  • LangeK. W.TuchaO.SteupA.GsellW.NaumannM. (1995). Subjective time estimation in Parkinson’s disease. J. Neural Transm. Suppl.46433438.

  • LeeM. S.KimH. S.LyooC. H. (2005). “Off” gait freezing and temporal discrimination threshold in patients with Parkinson disease. Neurology64670674.

  • LewisS. J.CoolsR.RobbinsT. W.DoveA.BarkerR. A.OwenA. M. (2003). Using executive heterogeneity to explore the nature of working memory deficits in Parkinson’s disease. Neuropsychologia41645654.

  • LewisS. J.FoltynieT.BlackwellA. D.RobbinsT. W.OwenA. M.BarkerR. A. (2005). Heterogeneity of Parkinson’s disease in the early clinical stages using a data driven approach. J. Neurol. Neurosurg. Psychiat.76343348.

  • LewisP. A.MiallR. C. (2003). Distinct systems for automatic and cognitively controlled time measurement: Evidence from neuroimaging. Curr. Opin. Neurobiol.13250255.

  • LogigianE.HefterH.ReinersK.FreundH. J. (1991). Does tremor pace repetitive voluntary motor behavior in Parkinson’s disease? Ann. Neurol.30172179.

  • LustigC.MatellM. S.MeckW. H. (2005). Not “just” a coincidence: Frontal-striatal interactions in working memory and interval timing. Memory13441448.

  • LustigC.MeckW. H. (2005). Chronic treatment with haloperidol induces working memory deficits in feedback effects of interval timing. Brain Cognition58916.

  • LyooC. H.RyuY. H.LeeM. J.LeeM. S. (2012). Striatal dopamine loss and discriminative sensory dysfunction in Parkinson’s disease. Acta Neurol. Scand.126344349.

  • MacDonaldC. J.MeckW. H. (2005). Differential effects of clozapine and haloperidol on interval timing in the supraseconds range. Psychopharmacology (Berl.)182232244.

  • MacDonaldA. A.MonchiO.SeergobinK. N.GanjaviH.TamjeediR.MacDonaldP. A. (2013). Parkinson’s disease duration determines effect of dopaminergic therapy on ventral striatum function. Movement Disord.28153160.

  • MadisonG. (2001). Variability in isochronous tapping: Higher order dependencies as a function of intertap interval. J. Exp. Psychol.-Human27411422.

  • MalapaniC.DeweerB.GibbonJ. (2002). Separating storage from retrieval dysfunction of temporal memory in Parkinson’s disease. J. Cognitive Neurosci.14311322.

  • MalapaniC.RakitinB.LevyR.MeckW. H.DeweerB.DuboisB.GibbonJ. (1998). Coupled temporal memories in Parkinson’s disease: A dopamine-related dysfunction. J. Cognitive Neurosci.10316331.

  • MatellM. S.BatesonM.MeckW. H. (2006). Single-trials analyses demonstrate that increases in clock speed contribute to the methamphetamine-induced horizontal shifts in peak-interval timing functions. Psychopharmacology (Berl.)188201212.

  • MatellM. S.KingG. R.MeckW. H. (2004). Differential adjustment of interval timing by the chronic administation of intermittent or continuous cocaine. Behav. Neurosci.118150156.

  • MatellM. S.MeckW. H. (2000). Neuropsychological mechanisms of interval timing behaviour. Bioessays2294103.

  • MatellM. S.MeckW. H. (2004). Cortico-striatal circuits and interval timing: Coincidence detection of oscillatory processes. Cognitive Brain Res.21139170.

  • MattisS. (1988). Dementia rating scale. Odessa F: Psychological Assessment Resources.

  • McNabF.KlingbergT. (2008). Prefrontal cortex and basal ganglia control access to working memory. Nat. Neurosci.11103107.

  • MeckW. H. (1983). Selective adjustment of the speed of internal clock and memory processes. J. Exp. Psychol.-Anim. Behav. Proc.9171201.

  • MeckW. H. (1986). Affinity for the dopamine D2 receptor predicts neuroleptic potency in decreasing the speed of an internal clock. Pharmacol. Biochem. Behav.2511851189.

  • MeckW. H. (1996). Neuropharmacology of timing and time perception. Cognitive Brain Res.3227242.

  • MeckW. H. (2006). Neuroanatomical localization of an internal clock: A functional link between mesolimbic, nigrostriatal, and mesocortical dopaminergic systems. Brain Res.110993107.

  • MeckW. H.BensonA. M. (2002). Dissecting the brain’s internal clock: How frontal-striatal circuitry keeps time and shifts attention. Brain Cognition48195211.

  • MeckW. H.ChengR. K.MacDonaldC. J.GainetdinovR. R.CaronM. G.ÇevikM. Ö. (2012). Gene-dose dependent effects of methamphetamine on interval timing in dopamine-transporter knockout mice. Neuropharmacology6212211229.

  • MerchantH.HarringtonD. L.MeckW. H. (2013). Neural basis of the perception and estimation of time. Annu. Rev. Neurosci.36313336.

  • MerchantH.LucianaM.HooperC.MajesticS.TuiteP. (2008). Interval timing and Parkinson’s disease: Heterogeneity in temporal performance. Exp. Brain Res.184233248.

  • MoreauC.OzsancakC.BlattJ. L.DerambureP.DesteeA.DefebvreL. (2007). Oral festination in Parkinson’s disease: Biomechanical analysis and correlation with festination and freezing of gait. Movement Disord.2215031506.

  • NakamuraR.NagasakiH.NarabayashiH. (1978). Disturbances of rhythm formation in patients with Parkinson’s disease. Part I. Characteristics of tapping response to the periodic signals. Percept. Motor Skill.466375.

  • NambuA.TokunoH.TakadaM. (2002). Functional significance of the cortico-sybthalamo-pallidal ‘hyperdirect’ pathway. Neurosci. Res.43111117.

  • O’BoyleD. J.FreemanJ. S.CodyF. W. (1996). The accuracy and precision of timing of self-paced, repetitive movements in subjects with Parkinson’s disease. Brain1195170.

  • OliveiraF. T.McDonaldJ. J.GoodmanD. (2007). Performance monitoring in the anterior cingulate is not all error related: Expectancy deviation and the represntation of action-outcome associations. J. Cognitive Neurosci.19111.

  • PastorM. A.ArtiedaJ.JahanshahiM.ObesoJ. A. (1992a). Time estimation and reproduction is abnormal in Parkinson’s disease. Brain115211225.

  • PastorM. A.JahanshahiM.ArtiedaJ.ObesoJ. A. (1992b). Performance of repetitive wrist movements in Parkinson’s disease. Brain115875891.

  • PerbalS.DeweerB.PillonB.VidailhetM.DuboisB.PouthasV. (2005). Effects of internal clock and memory disorders on duration reproductions and duration productions in patients with Parkinson’s disease. Brain Cognition583548.

  • PostB.SpeelmanJ. HaanR. J. & CARPA-study group (2008). Clinical heterogeneity in newly diagnosed Parkinson’s disease. J. Neurol.255716722.

  • RakitinB. C.GibbonJ.PenneyT. B.MalapaniC.HintonS. C.MeckW. H. (1998). Scalar expectancy theory and peak-interval timing in humans. J. Exp. Psychol.-Anim. Behav. Proc.241533.

  • RakshiJ. S.UemaT.ItoK.BaileyD. L.MorrishP. K.AshburnerJ.DagherA.JenkinsI. H.FristonK. J.BrooksD. J. (1999). Frontal, midbrain and striatal dopaminergic function in early and advanced Parkinson’s disease: A 3D [18F]dopa-PET study. Brain12216371650.

  • RascolO.GoetzC.KollerW.PoeweW.SampaioC. (2002). Treatment interventions for Parkinson’s disease: An evidence based assessment. Lancet35915891598.

  • RammsayerT.ClassenW. (1997). Impaired temporal discrimination in Parkinson’s disease: Temporal processing of brief durations as an indicator of degeneration of dopaminergic neurons in the basal ganglia. Intl J. Neurosci.914555.

  • RiesenJ. M.SchniderA. (2001). Time estimation in Parkinson’s disease: Normal long duration estimation despite impaired short duration discrimination. J. Neurol.2482735.

  • RocchiL.ConteA.NardellaA.Li VotiP.Di BiasioF.LeodoriG.FabbriniG.BerardelliA. (2013). Somatosensory temporal discrimination threshold may help to differentiate patients with multiple system atrophy from patients with Parkinson’s disease. Eur. J. Neurol.20714719.

  • SadatoN.IbanezV.CampbellG.DeiberM.-P.Le BihanD.HallettM. (1997). Frequency-dependent changes of regional cerebral blood flow during finger movements: Functional MRI compared to PET. J. Cerebr. Blood F. Met.17670679.

  • SantiA.MikiA.HornyakS.EidseJ. (2005). The perception of empty and filled time intervals by rats. Behav. Proc.70247263.

  • SchragA.QuinnN. P.Ben-ShlomoY. (2006). Heterogeneity of Parkinson’s disease. J. Neurol. Neurosurg. Psychiat.77275276.

  • ShidaraM.AignerT. G.RichmondB. J. (1998). Neuronal signals in the monkey ventral striatum related to progress through a predictable series of trials. J. Neurosci.1826132625.

  • SmithJ. G.HarperD. N.GittingsD.AbernethyD. (2007). The effect of Parkinson’s disease on time estimation as a function of stimulus duration range and modality. Brain Cognition64130143.

  • SpencerR. M.IvryR. B. (2005). Comparison of patients with Parkinson’s disease or cerebellar lesions in the production of periodic movements involving event-based or emergent timing. Brain Cognition588493.

  • StegemöllerE. L.SimuniT.MacKinnonC. (2009). Effect of movement frequency on repetitive finger movements in patients with Parkinson’s disease. Movement Disord.2411621169.

  • SummersJ. J.AnsonJ. G. (2009). Current status of the motor program: Revisited. Hum. Movement Sci.28566577.

  • TomaK.MimaT.MatsuokaT.GerloffC.OhnishiT.KoshyB.AndresF.HallettM. (2002). Movement rate effect on activation and functional coupling of motor cortical areas. J. Neurophysiol.8833773385.

  • TortaD. M.CastelliL.Latini-CorazziniL.BancheA.LopianoL.GeminianiG. (2010). Dissociation between time reproduction of actions and of intervals in patients with Parkinson’s disease. J. Neurol.25733773385.

  • Van RoodenS. M.ColasF.Martínez-MartínP.VisserM.VerbaanD.MarinusJ.ChaudhuriR. K.KokJ. N.van HiltenJ. J. (2011). Clinical subtypes of Parkinson’s disease. Movement Disord.265158.

  • WeardenJ. H.ToddN. P.JonesL. A. (2006). When do auditory/visual differences in duration judgements occur? Q. J. Exp. Psychol.5917091724.

  • WeardenJ. H.NortonR.MartinS.Montford-BebbO. (2007). Internal clock processes and the filled-duration illusion. J. Exp. Psychol.-Human33716729.

  • WeardenJ. H.Smith-SparkJ. H.CousinsR.EdelstynN. M.CodyF. W.O’BoyleD. J. (2008). Stimulus timing by people with Parkinson’s disease. Brain Cognition67264279.

  • WebsterD. D. (1968). Critical analysis of the disability in Parkinson’s disease. Mod. Treat.5257282.

  • WienerM.LohoffF. W.CoslettH. B. (2011). Double dissociation of dopamine genes and timing in humans. J. Cognitive Neurosci.2328112821.

  • Wild-WallN.WillemssenR.FalkensteinM.BesteC. (2008). Time estimation in healthy ageing and neurodegenerative basal ganglia disorders. Neuroscience Lett.4423438.

  • WingA. M.KristoffersonA. B. (1973a). Timing of interresponse intervals. Percept. Psychophys.13455460.

  • WingA. M.KristoffersonA. B. (1973b). Response delays and timing of discrete motor responses. Percept. Psychophys.14512.

  • WojteckiL.ElbenS.TimmermannL.ReckC.MaaroufM.JorgensS.PlonerM.SüdmeyerM.GroissS. J.SturmV.NiedeggenM.SchnitzlerA. (2011). Modulation of human time processing by subthalamic deep brain stimulation. PLoS One612.

  • YahalomG.SimonE. S.ThorneR.PeretzC.GiladiN. (2004). Hand rhythmic tapping and timing in Parkinson’s disease. Parkinsonism Relat. D.10143148.

  • YuH.SternadD.CorcosD. M.VaillancourtD. E. (2007). Role of hyperactive cerebellum and motor cortex in Parkinson’s disease. NeuroImage35222233.

  • ZélantiP. S.Droit-VoletS. (2012). Auditory and visual differences in time perception? An investigation from a developmental perspective with neuropsychological tests. J. Exp. Child Psychol.112296311.


  • View in gallery

    The direct and indirect dopaminergic pathways between the basal ganglia and the cortex in (a) healthy brain (b) Parkinson’s disease. The thickness of the lines indicates level of activity. Grey arrows represent excitatory connections; black arrows represent inhibitory connections. GPe, external segment of the globus pallidus; GPi, internal segment of the globus pallidus; SNc, substantia nigra pars compacta; SNr, substantia nigra pars reticulata; VL, ventrolateral nucleus of the thalamus.


Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 145 145 28
Full Text Views 261 262 38
PDF Downloads 10 10 1
EPUB Downloads 0 0 0