Animals, including fish, birds, rodents, non-human primates, and pre-verbal infants are able to discriminate the duration and number of events without the use of language. In this paper, we present the results of six experiments exploring the capability of adult rats to count 2–6 sequentially presented white-noise stimuli. The investigation focuses on the animal’s ability to exhibit spontaneous subtraction following the presentation of novel stimulus inversions in the auditory signals being counted. Results suggest that a subtraction operation between two opposite sensory representations may be a general processing strategy used for the comparison of stimulus magnitudes. These findings are discussed within the context of a mode-control model of timing and counting that relies on an analog temporal-integration process for the addition and subtraction of sequential events.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Aagten-Murphy D., Cappagli G., Burr D. (2014). Musical training generalizes across modalities and reveals efficient and adaptive mechanisms for reproducing temporal intervals. Acta Psychol., 147, 25–33.
Agostino P. V., Peryer G., Meck W. H. (2008). How music fills our emotions and helps us keep time. Behav. Brain Sci., 31, 575–576.
Agrillo C., Dadda M., Serena G., Bisazza A. (2008). Do fish count? Spontaneous discrimination of quantity in female mosquitofish. Anim. Cogn., 11, 495–503.
Agrillo C., Piffer L. (2012). Musicians outperform nonmusicians in magnitude estimation: Evidence of common processing mechnisms for time, space and numbers. Q. J. Exp. Psychol., 65, 2321–2332.
Agrillo C., Piffer L., Bisazza A., Butterworth B. (2012). Evidence for two numerical systems that arte similar in humans and guppies. PLoS One, 7, e31923.
Agrillo C., Ranpura A., Butterworth B. (2010). Time and numerosity estimation are independent: Behavioral evidence for two different systems using a conflict paradigm. Cogn. Neurosci., 1, 96–101.
Allman M. J., DeLeon I. G., Wearden J. H. (2011). A psychophysical assessment of timing in individuals with autism. Am. J. Intellect. Dev. Disabil., 116, 165–178.
Allman M. J., Meck W. H. (2012). Pathophysiological distortions in time perception and timed performance. Brain, 135, 656–677.
Allman M. J., Pelphrey K. A., Meck W. H. (2012). Developmental neuroscience of time and number: Implications for autism and other neurodevelopmental disabilities. Front. Integr. Neurosci., 6, 7.
Allman M. J., Teki S., Griffiths T. D., Meck W. H. (2014). Properties of the internal clock: First- and second-order principles of subjective time. Annu. Rev. Psychol., 65, 743–771.
Balci F., Gallistel C. R. (2005). Cross-domain transfer of quantitative discriminations: Is it all a matter of proportion? Psychon. Bull. Rev., 13, 636–642.
Barth H., Beckmann L., Spelke E. (2008). Nonsymbolic, approximate arithmetic in children: Evidence for abstract addition prior to instruction. Dev. Psychol., 44, 1466–1477.
Barth H., Kanwisher N., Spelke E. (2003). The construction of large number representations in adults. Cognition, 86, 201–221.
Barth H., La Mont K., Lipton J., Dehaene S., Kanwisher N., Spelke E. (2006). Nonsymbolic arithmetic in adults and young children. Cognition, 98, 199–222.
Brannon E. M. (2002). The development of ordinal numerical knowledge in infancy. Cognition, 83, 223–240.
Brannon E. M. (2004). What animals know about numbers. In Campbell J. I. D. (Ed.), Handbook of mathematical cognition (pp. 85–107). New York, NY, USA: Psychology Press.
Brannon E. M., Abbott S., Lutz D. J. (2004). Number bias for the discrimination of large visual sets in infancy. Cognition, 93, B59–B68.
Brannon E. M., Roitman J. D. (2003). Nonverbal representations of time and number in animals and human infants. In Meck W. H. (Ed.), Functional and neural mechanisms of interval timing (pp. 143–182). Boca Raton, FL, USA: CRC Press.
Brannon E. M., Terrace H. S. (1998). Ordering of the numerosities 1 to 9 by monkeys. Science, 282, 746–749.
Brannon E. M., Terrace H. S. (2000). Representation of the numerosities 1–9 by rhesus macaques (Macaca mulatta). J. Exp. Psychol. Anim. Behav. Process., 26, 31–49.
Brannon E. M., Terrace H. S. (2002). The evolution and otogeny of ordinal numerical ability. In Beckoff M., Allen C., Burghardt G. M. (Eds.), The aognitive animal (pp. 197–204). Cambridge, MA, USA: The MIT Press.
Brannon E. M., Wusthoff C. J., Gallistel C. R., Gibbon J. (2001). Subtraction in the pigeon: Evidence for a linear subjective number scale. Psychol. Sci., 12, 238–243.
Breukelaar J. W. C., Dalrymple-Alford J. C. (1998). Timing ability and numerical competence in rats. J. Exp. Psychol. Anim. Behav. Process., 24, 84–97.
Breukelaar J. W. C., Dalrymple-Alford J. C. (1999). Effects of lesions to the cerebellar vermis and hemispheres on timing and counting in rats. Behav. Neurosci., 113, 78–90.
Brighouse C., Hartcher-O’Brien J., Levitan C. A. (subm.). Encoding duration and rate by an integrative model of temporal processing. Timing Time Percept.
Broadbent H. A., Rakitin B. C., Church R. M., Meck W. H. (1993). Quantitative relationships between timing and counting. In Boysen S., Capaldi E. J. (Eds.), Numerical skills in animals (pp. 171–187). Hillsdale, NJ, USA: Erlbaum.
Bueti D., Walsh V. (2009). The parietal cortex and the prepresentation of time, space, number and other magnitudes. Philos. Trans. R. Soc. B, 364, 1831–1840.
Buhusi C. V., Cordes S. (2011). Time and number: The privileged status of small values in the brain. Front. Integr. Neurosci., 5, 67.
Buhusi C. V., Meck W. H. (2000). Timing for the absence of a stimulus: The gap paradigm reversed. J. Exp. Psychol. Anim. Behav. Process., 26, 305–322.
Buhusi C. V., Meck W. H. (2002). Differential effects of methamphetamine and haloperidol on the control of an internal clock. Behav. Neurosci., 116, 291–297.
Buhusi C. V., Meck W. H. (2005). What makes us tick? Functional and neural mechanisms of interval timing. Nat. Rev. Neurosci., 6, 755–765.
Buhusi C. V., Meck W. H. (2006). Interval timing with gaps and distracters: Evaluation of the ambiguity, switch, and time-sharing hypotheses. J. Exp. Psychol. Anim. Behav. Process., 32, 329–338.
Buhusi C. V., Perera D., Meck W. H. (2005). Memory for timing visual and auditory signals in albino and pigmented rats. J. Exp. Psychol. Anim. Behav. Process., 31, 18–30.
Buhusi C. V., Sasaki A., Meck W. H. (2002). Temporal integration as a function of signal/gap intensity in rats (Rattus norvegicus) and pigeons (Columba livia). J. Comp. Psychol., 116, 381–390.
Burr D., Ross J. (2008). A visual sense of number. Curr. Biol., 18, 425–428.
Burr D. C., Ross J., Binda P., Morrone M. C. (2010a). Saccades compress space, time and number. Trends Cogn. Sci., 12, 528–533.
Burr D. C., Turi M., Anobile G. (2010b). Subitizing but not estimation of numerosity requires attentional resources. J. Vision, 6, 1–10.
Butterworth B. (2010). Foundational numerical capacities and the origins of dyscalculia. Trends Cogn. Sci., 14, 534–541.
Cantlon J. F., Brannon E. M. (2006). Shared system for ordering small and large numbers in monkeys and humans. Psychol. Sci., 17, 402–407.
Cantlon J. F., Brannon E. M. (2007). Basic math in monkeys and college students. PLoS Biol., 5, e328.
Carey S. (1998). Knowledge of number: Its evolution and ontogeny. Science, 282, 641–642.
Carey S. (2001). On the very possibility of discontinuties in conceptual development. In Dupoux E. (Ed.), Language, brain, and cognitive development: Essays in honor of Jacques Mehler (pp. 303–324). Cambridge, MA, USA: MIT Press.
Chiang H. M., Lin Y. H. (2007). Reading comprehension instruction for students with autism spectrum disorders. Focus Autism Other Dev. Disabil., 22, 259–267.
Church R. M., Broadbent H. A. (1990). Alternative representations of time, number, and rate. Cognition, 37, 55–81.
Church R. M., Meck W. H. (1984). The numerical attribute of stimuli. In Roitblat H. L., Bever T. G., Terrace H. S. (Eds.), Animal cognition (pp. 445–464). Hillsdale, NJ, USA: Erlbaum.
Clement A., Droit-Volet S. (2001). Simultaneous or dissociative processing of duration and number of sequence of events? A developmental perspective. Presentation given at the ESCOP/British Psychological Society Conference, September, 2002.
Cohen L. B., Marks K. S. (2002). How infants process addition and subtraction events? Dev. Sci., 5, 186–212.
Cooper T. J., Heirdsfield A. M., Irons C. J. (1996). Children’s mental strategies for addition and subtraction word problems. In Mulligan J., Mitchelmore M. (Eds.), Children’s number learning (pp. 147–162). Adelaide, Australia: Australian Association of Mathematics Teachers, Inc.
Corbett B. A., Constantine L. J., Hendren R., Rocke D., Ozonoff S. (2009). Examining executive functioning in children with autism spectrim disorder, attention deficit hyperactivity disorder and typical development. Psychiatry Res., 166, 210–222.
Cordes S., Meck W. H. (in press). Ordinal judgments in the rat: An understanding of ‘longer’ and ‘shorter’ for supra-second, but not sub-second, durations. J. Exp. Psychol. Gen. DOI:10.1037/a0032439.
Cordes S., Williams C. L., Meck W. H. (2007). Common representations of abstract quantities. Curr. Direct. Psychol. Sci., 16, 156–161.
Dacke M., Srinivasan M. V. (2008). Evidence for counting in insects. Anim. Cogn., 11, 683–689.
de la Mora D. M., Nespor M., Toro J. M. (2013). Do humans and nonhuman animals share the grouping principles of the iambic–trochaic law? Atten. Percept. Psychophys., 75, 92–100.
de Lafuente V., Romo R. (2003). Decision arising from opposing views. Nat. Neurosci., 6, 792–793.
Dehaene S., Brannon E. M. (2010). Space, time, and number: A Kantian research program. Trends Cogn. Sci., 14, 517–519.
Dehaene S., Molko N., Cohen L., Wilson A. (2004). Arithmetic and the brain. Curr. Opin. Neurobiol., 14, 218–224.
Dehaene S., Spelke E., Pinel P., Stanescu R., Tsivkin S. (1999). Sources of mathematical thinking: Behavioral and brain-imaging evidence. Science, 284, 970–974.
Ditterich J., Mazurek M. E., Shadlen M. E. (2003). Nat. Neurosci., 6, 891–898.
Dormal V., Andres M., Pesenti M. (2008). Dissociation of numerosity and duration processing in the left intraparietal sulcus: A transcranial magnetic stimulation study. Cortex, 44, 462–469.
Dormal V., Dormal G., Joassin F., Pesenti M. (2012b). A common right parieto-frontal network for numerosity and duration processing: An fMRI study. Hum. Brain Mapping, 33, 1490–1501.
Dormal V., Grade S., Mormont E., Presenti M. (2012a). Dissociation between numerosity and duration processing in aging and early Parkinson’s disease. Neuropsychologia, 50, 2365–2370.
Dormal V., Seron X., Pesenti M. (2006). Numerosity-duration interference: A Stroop-experiment. Acta Psychologica, 121, 109–124.
Droit-Volet S., Clement A., Fayol M. (2003). Time and number discrimination in a bisection task with a sequence of stimuli: A developmental approach. J. Exp. Child Psychol., 84, 63–76.
Droit-Volet S., Meck W. H. (2007). How emotions colour our perception of time. Trends Cogn. Sci., 11, 504–513.
Falter C. M., Elliot M., Bailey A. (2012a). Increased perceptual resolution: Temporal event-structure coding in autism spectrum disorders. PLoS One, 7, e32774.
Falter C. M., Noreika V., Wearden J. H., Bailey A. J. (2012b). More consistent, yet less sensitive: Interval timing in autism spectrum disorders. Q. J. Exp. Psychol., 65, 2093–2107.
Feigenson L., Carey S., Hauser M. D. (2002a). The representations underlying infants’ choice of more: Object files versus analog magnitudes. Psychol. Sci., 13, 150–156.
Feigenson L., Carey S., Spelke E. (2002b). Infants’ discrimination of number vs. continuous extent. Cogn. Psychol., 44, 33–66.
Feigenson L., Dehaene S., Spelke E. (2004). Core systems of number. Trends Cogn. Sci., 8, 307–314.
Fernandes D. M., Church R. M. (1982). Discrimination of the number of sequential events by rats. Anim. Learn. Behav., 10, 171–176.
Flombaum J. I., Junge J. A., Hauser M. D. (2005). Rhesus monkeys (Macaca mulatta) spontaneously compute addition operations over large numbers. Cognition, 97, 315–325.
Fortin C., Fairhurst S., Malapani C., Morin C., Towey J., Meck W. H. (2009). Expectancy in humans in multisecond peak-interval timing with gaps. Atten. Percept. Psychophys., 71, 789–802.
Fuson K. (1984). More complexities in subtraction. J. Res. Math. Educ., 15, 214–225.
Fuson K. (1986a). Teaching children to subtract by counting up. J. Res. Math. Educ., 17, 172–189.
Fuson K. C. (1986b). Roles of representation and verbalization in the teaching of multi-digit addition and subtraction. Eur. J. Psychol. Educ., 1, 35–56.
Fuson K. (1992). Research on whole number addition and subtraction. In Grouws D. A. (Ed.), Handbook of research on mathematics teaching and learning. New York, NY, USA: Macmillan.
Fuson K. C., Willis G. B. (1988). Subtracting by counting up: More evidence. J. Res. Math. Educ., 19, 402–420.
Gallistel C. R. (1989). Animal cognition: The representation of space, time and number. Annu. Rev. Psychol., 40, 155–189.
Gallistel C. R. (1990). The organization of learning. Cambridge, MA, USA: MIT Press.
Gallistel C. R., Gelman R. (1992). Preverbal and verbal counting and computation. Cognition, 44, 43–74.
Gallistel C. R., Gelman R. (2000). Non-verbal numerical cognition: From reals to integers. Trends Cogn. Sci., 4, 59–65.
Gelman R. (2000). The epigenesis of mathematical thinking. J. App. Dev. Psychol., 21, 27–37.
Gelman R., Cordes S. (2001). Counting in animals and humans. In Dupoux E. (Ed.), Language, brain, and cognitive development: Essays in honor of Jacques Mehler (pp. 279–301). Cambridge, MA, USA: MIT Press.
Gelman R., Gallistel C. R. (1978). The child’s understanding of number. Cambridge, MA, USA: Harvard University Press.
Gelman R., Meck E., Merkin S. (1986). Young children’s numerical competence. Cogn. Dev., 1, 1–29.
Gibbon J., Church R. M. (1990). Representation of time. Cognition, 37, 23–54.
Gibbon J., Church R. M., Meck W. H. (1984). Scalar timing in memory. Ann. N.Y. Acad. Sci., 423, 52–77.
Gilaie-Dotan S., Kanai R., Rees G. (2011). Anatomy of human sensory cortices reflects inter-individual variability in time estimation. Front. Integr. Neurosci., 5, 76.
Gilaie-Dotan S., Rees G., Butterworth B., Cappelletti M. (2014). Impaired numerical ability affects supra-second time estimation. Timing Time Percept., 2, 169–187.
Gilmore C. K., McCarthy S. E., Spelke E. S. (2007). Symbolic arithmetic knowledge without instruction. Nature, 447, 589–591.
Gilmore C. K., McCarthy S. E., Spelke E. S. (2010). Non-symbolic arithmetic abilities and mathematics achievement in the first year of formal schooling. Cognition, 115, 394–406.
Grondin S., Meilleur-Wells G., Lachance R. (1999). When to start explicit counting in a time-intervals discrimination task: A critical point in the timing process of humans. J. Exp. Psychol. Hum. Percept. Perform., 25, 993–1004.
Gu B. M., Cheng R. K., Yin B., Meck W. H. (2011). Quinpirole-induced sensitization to noisy/sparse periodic input: Temporal synchronization as a component of obsessive-compulsive disorder. Neuroscience, 179, 143–150.
Halberda J., Mazzocco M. M., Feigenson L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455, 665–668.
Hauser M. D., Carey S. (2003). Spontaneous representations of small numbers of objects by rhesus macaques: Examinations of content and format. Cogn. Psychol., 47, 367–401.
Hauser M. D., Carey S., Hauser L. (2000). Spontaneous number representation in semi-free-ranging rhesus monkeys. Proc. R. Soc. Lond. B Biol. Sci., 267, 829–833.
Hauser M. D., Dehaene S., Dehaene-Lambertz G., Patalano A. L. (2002). Spontaneous number discrimination of multi-format auditory stimuli in cotton-top tamarins (Saguinus oedipus). Cognition, 86, B23–B32.
Hauser M. D., MacNeilage P., Ware M. (1996). Numerical representations in primates. Proc. Nat. Acad. Sci. U.S.A., 93, 1514–1517.
Hayashi M. J., Kanai R., Tanabe H. C., Yoshida Y., Carlson S., Walsh V., Sadato N. (2013). Interaction of numerosity and time in prefrontal and parietal cortex. J. Neurosci., 33, 883–893.
Heinz M. G., Formby C. (1999). Detection of time- and band-limited increments and decrements in a random-level noise. J. Acoust. Soc. Am., 106, 313–326.
Hinton S. C., Meck W. H. (1997). How time flies: Functional and neural mechanisms of interval timing. Adv. Psychol., 120, 409–457.
Iversen J. R., Patel A. D., Ohgushi K. (2008). Perception of rhythmic grouping depends on auditory experience. J. Acoust. Soc. Am., 124, 2263–2271.
Iversen J. R., Repp B. H., Patel A. D. (2009). Top-down control of rhythm perception modulates early auditory responses. Ann. N.Y. Acad. Sci., 1169, 58–73.
Joram E., Subrahmanyam K., Gelman R. (1998). Measurement estimation: Learning to map the route from number to quantity and back. Rev. Educ. Res., 68, 413–449.
Jordan K., MacLean E. L., Brannon E. M. (2008). Monkeys match and tally quantities across senses. Cognition, 108, 617–625.
Kilian A., Yaman S., von Fersen L., Gunturkun O. (2003). A bottlenose dopphin discriminates visual stimuli differing in numerosity. Learn. Behav., 31, 133–142.
Kobayashi T., Hiraki K., Mugitani R., Hasegawa T. (2004). Baby arithmetic: One object plus one tone. Cognition, 91, B23–B34.
Kwakye L. D., Foss-Feig J. H., Cascio C. J., Stone W. L., Wallace M. T. (2011). Altered auditory and multisensory temporal processing in autism spectrum disorders. Front. Integr. Neurosci., 4, 129.
Lake J. I., LaBar K. S., Meck W. H. (in press). Hear it playing low and slow: How pitch level differentially influences time perception. Acta Psychol. DOI:10.1016/j.actpsy.2014.03.010.
Langer J., Gillette P., Arriaga R. I. (2003). Toddlers’ cognition of adding and subtracting objects in action and in perception. Cogn. Dev., 18, 233–246.
Lipton J. S., Spelke E. S. (2003). Origins of number sense: Large-number discrimination in human infants. Psychol. Sci., 14, 396–401.
Lustig C. (2011). The neuroscience of time and number: Untying the Gordian knot. Front. Integr. Neurosci., 5, 47.
MacDonald C. J., Fortin N. J., Sakata S., Meck W. H. (2014). Retrospective and prospective views on the role of the hippocampus in interval timing and memory for elapsed time. Timing Time Percept., 2, 51–61.
Matell M. S., Meck W. H. (2004). Cortico-striatal circuits and interval timing: Coincidence-detection of oscillatory processes. Cogn. Brain Res., 21, 139–170.
Mazurek M. E., Roitman J. D., Ditterich J., Shadlen M. N. (2003). A role for neural integrators in perceptual decision making. Cereb. Cortex, 13, 1257–1269.
McCrink K., Spelke E. S., Dehaene S., Pica P. (2012). Non-symbolic halving in an Amazonian indigene group. Dev. Sci., 16, 451–462.
Mechner F., Guevrekian L. (1962). Effects of deprivation upon counting and timing in rats. J. Exp. Anal. Behav., 5, 463–466.
Meck W. H. (1983). Selective adjustment of the speed of internal clock and memory processes. J. Exp. Psychol. Anim. Behav. Process., 9, 171–201.
Meck W. H. (1985). Postreinforcement signal processing. J. Exp. Psychol. Anim. Behav. Process., 11, 52–70.
Meck W. H. (1997). Application of a mode-control model of temporal integration to counting and timing behaviour. In Bradshaw C. M., Szabadi E. (Eds.), Time and behaviour: Psychological and neurobiological analyses (pp. 133–184). New York, NY, USA: Elsevier.
Meck W. H. (2003). Functional and neural mechanisms of interval timing. Boca Raton, FL, USA: CRC Press.
Meck W. H., Church R. M. (1982a). Abstraction of temporal attributes. J. Exp. Psychol. Anim. Behav. Process., 8, 226–243.
Meck W. H., Church R. M. (1982b). Discrimination of fixed intertrial intervals in cross-modal transfer of duration. Bull. Psychon. Soc., 19, 234–236.
Meck W. H., Church R. M. (1983). A mode control model of counting and timing processes. J. Exp. Psychol. Anim. Behav. Process., 9, 320–334.
Meck W. H., Church R. M., Gibbon J. (1985). Temporal integration in duration and number discrimination. J. Exp. Psychol. Anim. Behav. Process., 11, 591–597.
Meck W. H., Church R. M., Matell M. S. (2013). Hippocampus, time, and memory — A retrospective analysis. Behav. Neurosci., 127, 642–654.
Meck W. H., Church R. M., Olton D. S. (1984). Hippocampus, time, and memory. Behav. Neurosci., 98, 3–22.
Meck W. H., Doyère V., Gruart A. (2012). Interval timing and time-based decision making. Front. Integr. Neurosci., 6, 13.
Meck W. H., N’Diaye K. (2005). Un modèle neurobiologique de la perception et de l’estimation du temps. Psychol. Fr., 50, 47–63.
Meck W. H., Williams C. L. (1997). Characterization of the facilitative effects of perinatal choline supplementation on timing and temporal memory. NeuroReport, 8, 2831–2835.
Merchant H., Harrington D. L., Meck W. H. (2013). Neural basis of the perception and estimation of time. Annu. Rev. Neurosci., 36, 313–336.
Moore B. C., Peters R. W., Kohlrausch A., van de Par S. (1997). Detection of increments and decrements in sinusoids as a function of frequency, increment, and decrement duration and pedestal duration. J. Acoust. Soc. Am., 102, 2954–2965.
Nieder A. (2005). Counting on neurons: The neurobiology of numerical competence. Nat. Rev. Neurosci., 6, 177–190.
Nieder A., Freedman D. J., Miller E. K. (2002). Representation of the quantity of visual items in the primate prefrontal cortex. Science, 297, 1708–1711.
Nieder A., Miller E. K. (2003). Coding of cognitive magnitude: Compressed scaling of numerical information in the primate prefrontal cortex. Neuron, 37, 149–157.
Nieder A., Miller E. K. (2004a). Analog numerical representations in Rhesus monkeys: Evidence for parallel processing. J. Cogn. Neurosci., 16, 889–901.
Nieder A., Miller E. K. (2004b). A parieto-frontal network for visual numerical information in the monkey. Proc. Nat. Acad. Sci. U.S.A., 101, 7457–7462.
Park J., Brannon E. M. (2013). Training the approximate number system improves math proficiency. Psychol. Sci., 24, 2013–2019.
Patel A. D., Iversen J. R., Bregman M. R., Schulz I. (2009). Experimental evidence for synchronization to a musical beat in a nonhuman animal. Curr. Biol., 19, 827–830.
Pedersen C. B., Salomon G. (1977). Temporal integration of acoustic energy. Acta Otolaryngol., 83, 417–423.
Penney T. B., Gibbon J., Meck W. H. (2000). Differential effects of auditory and visual signals on clock speed and temporal memory. J. Exp. Psychol. Hum. Percept. Perform., 26, 1770–1787.
Penney T. B., Gibbon J., Meck W. H. (2008). Categorical scaling of duration bisection in pigeons (Columba livia), mice (Mus musculus), and humans (Homo sapiens). Psychol. Sci., 19, 1103–1109.
Pepperberg I. M. (2006). Grey parrot (Psittacus erithacus) numerical abilities: Addition and further experiments on a zero-like concept. J. Comp. Psychol., 120, 1–11.
Pessoa L., Desimone R. (2003). From humble neural beginnings comes knowledge of numbers. Neuron, 37, 4–6.
Pica P., Lemer C., Izard V., Dehaene S. (2004). Exact and approximate arithmetic in an Amazonian indigene group. Science, 306, 499–503.
Pinas M., Donohue S. E., Woldorff M. G., Brannon E. M. (in press). Electrophysiological evidence for the involvement of the approximate number system in preschoolers’ processing of spoken number words. J. Cogn. Neurosci.
Rakoczy H., Clüver A., Saucke L., Stoffregen N., Gräbener A., Migura J., Call J. (2014). Apes are intuitive statisticians. Cognition, 131, 60–68.
Roberts W. A. (1995). Simultaneous numerical and temporal processing in the pigeon. Curr. Direct. Psychol. Sci., 4, 47–51.
Roberts W. A., Mitchell S. (1994). Can a pigeon simultaneously process temporal and numerical information? J. Exp. Psychol. Anim. Behav. Process., 20, 66–78.
Robinson K. M., Ninowski J. E. (2003). Adults’ understanding of inversion concepts: How does performance on addition and subtraction inversion problems compare to performance on multiplication and division inversion problems? Can. J. Exp. Psychol., 57, 321–330.
Roitman J. D., Brannon E. M., Andrews J. R., Platt M. L. (2005). Nonverbal representation of time and number in adults. Acta Psychol., 124, 296–318.
Roitman J. D., Brannon E. M., Andrews J. R., Platt M. L. (2012). Representation of numerosity in posterior parietal cortex. Front. Integr. Neurosci., 6, 25.
Romo R., Hernandez A., Zainos A., Salinas E. (2003). Correlated neuronal discharges that increase coding efficiency during perceptual discrimination. Neuron, 38, 649–657.
Romo R., Salinas E. (2003). Flutter discrimination: Neural codes, perception, memory and decision making. Nat. Rev. Neurosci., 4, 203–218.
Rugani R., Fontanari L., Simoni E., Regolin L., Vallortigara G. (2009). Arithmetic in newborn chicks. Proc. R. Soc. B, 276, 2451–2460.
Santi A., Coppa R., Ross L. (2001). Effects of the dopamine D2 agonist, quinpirole, on time and number processing in rats. Pharm. Biochem. Behav., 68, 147–155.
Santi A., Hope C. (2001). Errors in pigeons’ memory for number of events. Anim. Learn. Behav., 29, 208–220.
Schirmer A. (2004). Timing speech: A review of lesion and neurimaging findings. Cogn. Brain Res., 21, 269–287.
Seyler D. J., Kirk E. P., Ashcraft M. H. (2003). Elementary subtraction. J. Exp. Psychol. Learn. Mem. Cogn., 29, 1339–1352.
Shi Z., Church R. M., Meck W. H. (2013). Bayesian optimization of time perception. Trends Cogn. Sci., 17, 556–564.
Slaughter V., Kamppi D., Paynter J. (2006). Toddler subtraction with large sets: Further evidence for an analog-magnitude representation of number. Dev. Sci., 9, 33–39.
Sowder J. (1990). Mental computation and number sense. Arithm. Teacher, 37, 18–20.
Starkey P., Cooper R. G. (1980). Perception of numbers by human infants. Science, 210, 1033–1035.
Starkey P., Spelke E. S., Gelman R. (1990). Numerical abstraction by human infants. Cognition, 36, 97–128.
Strauss M. S., Curtis L. E. (1981). Infant perception of numerosity. Child Dev., 52, 1146–1152.
Sulkowski G. M., Hauser M. D. (2001). Can rhesus monkeys spontaneously subtract? Cognition, 79, 239–262.
Szelag E., Kowalska J., Galkowski T., Pöppel E. (2004). Temporal processing deficits in high-functioning children with autism. Brit. J. Psychol., 95, 269–282.
Taubert J., Apthorp D., Aagten-Murphy D., Alais D. (2011). The role of holistic processing in face perception: Evidence from the face inversion effect. Vision Res., 51, 1273–1278.
Thaut M. H. (2003). Neural basis of rhythmic timing networks in the human brain. Ann. N.Y. Acad. Sci., 999, 364–373.
Uller C., Carey S., Huntley-Fenner G., Klatt L. (1999). What representations might underlie infant numerical knowledge? Cogn. Develop., 14, 1–36.
Uller C., Jaeger R., Guidry G., Martin C. (2003). Salamanders (Plethodon cinereus) go for more: Rudiments of number in an amphibian. Anim. Cogn., 6, 105–112.
Valente D. L., Patra H., Jesteadt W. (2011). Relative effects of increment and pedestal duration on the detection of intensity increments. J. Acoust. Soc. Am., 129, 2095–2103.
Viau-Quesnel C., Gaudreault R., Ouellet A.-A., Fortin C. (2014). Making sense of timing and attention: Modality effect in timing with a break. Timing Time Percept., 2, 128–143.
Vilette B. (2002). Do young children grasp the inverse relationship between addition and subtraction? Evidence against early arithmetic. Cogn. Dev., 17, 1365–1383.
Walsh V. (2003). A theory of magnitude: Common cortical metrics of time, space and quantity. Trends Cogn. Sci., 7, 483–488.
Whalen J., Gallistel C. R., Gelman R. (1999). Non-verbal counting in humans: The psychophysics of number representation. Psychol. Sci., 10, 130–137.
Williams C. L. (2012). Sex differences in counting and timing. Front. Integr. Neurosci., 5, 88.
Woodrow H. (1909). A quantitative study of rhythm: The effect of variations in intensity, rate and duration. Arch. Psychol., 14, 1–66.
Wynn K. (1992). Addition and subtraction by human infants. Nature, 358, 749–750.
Wynn K. (1995). Infants possess a system of numerical knowledge. Curr. Direct. Psychol. Sci., 4, 172–177.
Wynn K. (1998). Psychological foundations of number: Numerical competence in human infants. Trends Cogn. Sci., 2, 296–303.
Wynn K., Chiang W.-C. (1998). Limits to infants’ knowledge of objects: The case of magical appearance. Psychol. Sci., 9, 448–455.
Xia L., Emmerton J., Siemann M., Delius J. D. (2001). Pigeons (Columba livia) learn to link numerosities with symbols. J. Comp. Psychol., 115, 83–91.
Xu F. (2003). Numerosity discrimination in infants: Evidence for two systems of representations. Cognition, 89, B15–B25.
Xu F., Spelke E. S. (2000). Large number discrimination in 6-month-old infants. Cognition, 74, B1–B11.
Xuan B., Zhang D., He S., Chen X. (2007). Larger stimuli are judged to last longer. J. Vision, 7, 1–5.
Yoshida K. A., Iversen J. R., Patel A. D., Mazuka R., Nito H., Gervain J., Werker J. F. (2010). The development of perceptual grouping biases in infancy: A Japenese–English cross-linguistic study. Cognition, 115, 356–361.
Young L. N., Cordes S. (2013). Fewer things, lasting longer: The effects of emotion on quantity judgments. Psychol. Sci., 24, 1057–1059.
Zur O., Gelman R. (2004). Young children can add and subtract by predicting and checking. Early Child. Res. Q., 19, 121–137.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 773 | 93 | 8 |
Full Text Views | 183 | 4 | 0 |
PDF Views & Downloads | 39 | 15 | 0 |
Animals, including fish, birds, rodents, non-human primates, and pre-verbal infants are able to discriminate the duration and number of events without the use of language. In this paper, we present the results of six experiments exploring the capability of adult rats to count 2–6 sequentially presented white-noise stimuli. The investigation focuses on the animal’s ability to exhibit spontaneous subtraction following the presentation of novel stimulus inversions in the auditory signals being counted. Results suggest that a subtraction operation between two opposite sensory representations may be a general processing strategy used for the comparison of stimulus magnitudes. These findings are discussed within the context of a mode-control model of timing and counting that relies on an analog temporal-integration process for the addition and subtraction of sequential events.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 773 | 93 | 8 |
Full Text Views | 183 | 4 | 0 |
PDF Views & Downloads | 39 | 15 | 0 |