Do you want to stay informed about this journal? Click the buttons to subscribe to our alerts.
The study of the neural basis of time perception has seen a resurgence of interest within the past decade. A variety of these studies have included the use of transcranial magnetic stimulation (TMS), a noninvasive technique for stimulating discrete regions of the surface of the brain. Here, the results of these studies are reviewed and their conclusions are interpreted within a context-dependent framework. However, the use of TMS as an investigatory technique has much unexplored potential that may be particularly beneficial to the study of time perception. As such, considerations are made regarding the design of TMS studies of time perception and future directions are outlined that may be utilized to further elucidate the neural basis of timing in the human brain.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Alexander I., Cowey A., Walsh V. (2005). The right parietal cortex and time perception: Back to Critchley and the Zeitraffer phenomenon. Cogn. Neuropsychol., 22, 306–315.
Allan L. G., Gibbon J. (1991). Human bisection at the geometric mean. Learn. Motiv., 22, 39–58.
Allman M. J., Meck W. H. (2012). Pathophysiological distortions in time perception and timed performance. Brain, 135, 656–677.
Allman M. J., Pelphrey K. A., Meck W. H. (2012). Developmental neuroscience of time and number: Implications for autism and other neurodevelopmental disabilities. Front. Integr. Neurosci., 6, 7.
Allman M. J., Teki S., Griffiths T. D., Meck W. H. (2014). Properties of the internal clock: First- and second-order principles of subjective time. Annu. Rev. Psychol., 65, 743–771.
Amassian V. E., Cracco R. Q., Maccabee P. J., Cracco J. B., Rudell A., Eberle L. (1989). Suppression of visual perception by magnetic coil stimulation of human occipital cortex. Electroencephalogr. Clin. Neurophysiol., 74, 458–462.
Berardelli A., Inghilleri M., Rothwell J. C., Romeo S., Curra A., Gilio F., Modugno N., Manfredi M. (1998). Facilitation of muscle evoked responses after repetitive cortical stimulation in man. Exp. Brain Res., 122, 79–84.
Bueti D. (2011). The sensory representation of time. Front. Integr. Neurosci., 5, 34.
Bueti D., Bahrami B., Walsh V. (2008b). Sensory and association cortex in time perception. J. Cogn. Neurosci., 20, 1054–1062.
Bueti D., van Dongen E. V., Walsh V. (2008a). The role of superior temporal cortex in auditory timing. PLoS ONE, 3(6), e2481.
Buhusi C. V., Cordes S. (2011). Time and number: The privileged status of small values in the brain. Front. Integr. Neurosci., 5, 67.
Buhusi C. V., Meck W. H. (2005). What makes us tick? Functional and neural mechanisms of interval timing. Nat. Rev. Neurosci., 6, 755–765.
Carlson V. R., Feinberg I. (1968). Individual variations in time judgment and the concept of an internal clock. J. Exp. Psychol., 77, 631–640.
Casini L., Vidal F. (2011). The SMAs: Neural substrate of the accumulator? Front. Integr. Neurosci., 5, 35.
Cattaneo Z., Silvanto J. (2008). Investigating visual motion perception using the transcranial magnetic stimulation-adaptation paradigm. NeuroReport, 19, 1423–1427.
Chanes L., Quentin R., Tallon-Baudry C., Valero-Cabre A. (2013). Causal frequency-specific contributions of frontal spatiotemporal patterns induced by non-invasive neurostimulation to human visual performance. J. Neurosci., 33, 4401–4412.
Classen J., Stefan K. (2008). Changes in TMS measures induced by repetitive TMS. In Wasserman E. M., Epstein C. M., Ziemann U., Walsh V., Paus T., Lisanby S. H. (Eds.), The Oxford handbook of transcranial magnetic stimulation (pp. 185–200). Oxford: Oxford University Press.
Cordes S., Williams C. L., Meck W. H. (2007). Common representations of abstract quantities. Curr. Dir. Psychol. Sci., 16, 156–161.
Coull J., Nobre A. (2008). Dissociating explicit timing from temporal expectation with fMRI. Curr. Opin. Neurobiol., 18, 137–144.
Coull J. T., Cheng R. K., Meck W. H. (2011). Neuroanatomical and neurochemical substrates of timing. Neuropsychopharmacology, 36, 3–25.
Coull J. T., Vidal F., Nazarian B., Macar F. (2004). Functional anatomy of the attentional modulation of time estimation. Science, 303, 1506–1508.
Del Olmo M. F., Cheeran B., Koch G., Rothwell J. C. (2007). Role of the cerebellum in externally paced rhythmic finger movements. J. Neurophysiol., 98, 145–152.
Doumas M., Praamstra P., Wing A. M. (2005). Low frequency rTMS effects on sensorimotor synchronization. Exp. Brain Res., 167, 238–245.
Fierro B., Palermo A., Puma A., Francolini M., Panetta M. L., Daniele O., Brighina F. (2007). Role of the cerebellum in time perception: A TMS study in normal subjects. J. Neurol. Sci., 263, 107–112.
Fortin C. (2003). Attentional time-sharing in interval timing. In Meck W. H. (Ed.), Functional and neural mechanisms of interval timing (pp. 235–260). Boca Raton, FL: CRC Press.
Gibbon J. (1977). Scalar expectancy theory and weber’s law in animal timing. Psychol. Rev., 84, 279–325.
Gibbon J., Church R. M., Meck W. H. (1984). Scalar timing in memory. Ann. NY Acad. Sci., 423, 52–77.
Gooch C. M., Wiener M., Wencil E. B., Coslett H. B. (2010). Interval timing disruptions in subjects with cerebellar lesions. Neuropsychologia, 48, 1022–1031.
Gu B. M., Meck W. H. (2011). New perspectives on Vierordt’s law: Memory-mixing in ordinal temporal comparison tasks. Lect. Notes Comp. Sci., 6789 LNAI, 67–78.
Guttman S. E., Gilroy L. A., Blake R. (2005). Hearing what the eyes see. Auditory encoding of visual temporal sequences. Psychol. Sci., 16, 228–235.
Hamilton R. H., Sanders L., Benson J., Faseyitan O., Norise C., Naeser M., Martin P., Coslett H. B. (2010). Stimulating conversation: Enhancement of elicited propositional speech in a patient with chronic non-fluent aphasia following transcranial magnetic stimulation. Brain Lang., 113, 45–50.
Hamilton R. H., Wiener M., Drebing D. E., Coslett H. B. (2013). Gone in a flash: Manipulation of audiovisual temporal integration using transcranial magnetic stimulation. Front. Psychol., 4, 571.
Harrington D. L., Haaland K. Y., Knight R. T. (1998). Cortical networks underlying mechanisms of time perception. J. Neurosci., 18, 1085–1095.
Harrington D. L., Lee R. R., Boyd L. A., Rapcsak S. Z., Knight R. T. (2004). Does the representation of time depend on the cerebellum? Effect of cerebellar stroke. Brain, 127, 561–574.
Harrington D. L., Zimbelman J. L., Hinton S. C., Rao S. M. (2010). Neural modulation of temporal encoding, maintenance, and decision processes. Cereb. Cortex, 20, 1274–1285.
Hayashi M. J., Kanai R., Tanabe H. C., Yoshida Y., Carlson S., Walsh V., Sadato M. (2013). Interaction of numerosity and time in prefrontal and parietal cortex. J. Neurosci., 33, 883–893.
Heron J., Aaen-Stockdale C., Hotchkiss J., Roach N. W., McGraw P. V., Whitaker D. (2012). Duration channels mediate human time perception. Proc. R. Soc. B, 279, 690–698.
Hinton S. C., Harrington D. L., Binder J. R., Durgerian S., Rao S. M. (2004). Neural systems supporting timing and chronometric counting: An fMRI study. Cogn. Brain Res., 21, 183–192.
Hinton S. C., Meck W. H. (2004). Frontal-striatal circuitry activated by human peak-interval timing in the supra-seconds range. Cogn. Brain Res., 21, 171–182.
Hinton S. C., Rao S. M. (2004). “One-thousand one … one-thousand two …”: Chronometric counting violates the scalar property in interval timing. Psychon. Bull. Rev., 11, 24–30.
Huang Y.-Z., Edwards M. J., Rounis E., Bhatia K. P., Rothwell J. C. (2005). Theta burst stimulation of the human motor cortex. Neuron, 45, 201–206.
Ilmoniemi R. J., Kicic D. (2010). Methodology for combined TMS and EEG. Brain Topogr., 22, 233–248.
Ivry R. B., Schlerf J. E. (2008). Dedicated and intrinsic models of time perception. Trends Cogn. Sci., 12, 273–280.
Jones C. R., Rosenkranz K., Rothwell J. C., Jahanshahi M. (2004). The right dorsolateral prefrontal cortex is essential in time reproduction: An investigation with repetitive transcranial magnetic stimulation. Exp. Brain Res., 158, 366–372.
Jones C. R. G., Jahanshahi M. (2014). Contribution of the basal ganglia to temporal processing: Evidence from Parkinson’s disease. Timing Time Percept., 2, 87–127.
Kanai R., Rees G. (2011). The structural basis of inter-individual differences in human behaviour and cognition. Nat. Rev. Neurosci., 12, 231–242.
Kanai R., Lloyd H., Bueti D., Walsh V. (2011). Modality-independent role of the primary auditory cortex in time estimation. Exp. Brain Res., 209, 465–471.
Koch G., Oliveri M., Torriero S., Caltagirone C. (2003). Underestimation of time perception after repetitive transcranial magnetic stimulation. Neurology, 60, 1844–1846.
Koch G., Oliveri M., Brusa L., Stanzione P., Torriero S., Caltagirone C. (2004). High-frequency rTMS improves time perception in Parkinson disease. Neurology, 63, 2405–2406.
Koch G., Oliveri M., Torriero S., Salerno S., Gerfo E. L., Caltagirone C. (2007). Repetitive TMS of cerebellum interferes with millisecond time processing. Exp. Brain Res., 179, 291–299.
Kononowicz T. W., van Rijn H. (2014). Decoupling interval timing and climbing neural activity: A dissociation between CNV and N1P2 amplitudes. J. Neurosci., 34, 2931–2939.
Lake J. I., Meck W. H. (2013). Differential effects of amphetamine and haloperidol on temporal reproduction: Dopaminergic regulation of attention and clock speed. Neuropsychologia, 51, 284–292.
Lee K. H., Egleston P. N., Brown W. H., Gregory A. N., Barker A. T., Woodruff P. W. (2007). The role of the cerebellum in sub-second time perception: Evidence from repetitive transcranial magnetic stimulation. J. Cogn. Neurosci., 19, 147–157.
Legon W., Dionne J. K., Staines W. R. (2013). Continuous theta burst stimulation of the supplementary motor area: Effect upon perception and somatosensory and motor evoked potentials. Brain Stimul., 6, 877–883.
Lewis P. A., Meck W. H. (2012). Time and the sleeping brain. Psychologist, 25, 594–597.
Livesey A. C., Wall M. B., Smith A. T. (2007). Time perception: Manipulation of task difficulty dissociates clock functions from other cognitive demands. Neuropsychologia, 45, 321–331.
Lustig C. (2011). The neuroscience of time and number: Untying the Gordian knot. Front. Integr. Neurosci., 5, 47.
Lustig C., Meck W. H. (2005). Chronic treatment with haloperidol induces working memory deficits in feedback effects of interval timing. Brain Cogn., 58, 9–16.
Macar F., Vidal F. (2009). Timing processes: An outline of behavioural and neural indicies not systematically considered in timing models. Can. J. Exp. Psychol., 63, 227–239.
Mangels J. A., Ivry R. B., Shimizu N. (1998). Dissociable contributions of the prefrontal and neocerebellar cortex to time perception. Cogn. Brain Res., 7, 15–39.
Matell M. S., Meck W. H. (2000). Neuropsychological mechanisms of interval timing behavior. Bioessays, 22, 94–103.
Matell M. S., Meck W. H. (2004). Cortico-striatal circuits and interval timing: Coincidence detection of oscillatory processes. Cogn. Brain Res., 21, 139–170.
Meck W. H. (2005). Neuropsychology of timing and time perception. Brain Cogn., 58, 1–8.
Melgire M., Ragot R., Samson S., Penney T. B., Meck W. H., Pouthas V. (2005). Auditory/visual duration bisection in patients with left or right medial-temporal lobe resection. Brain Cogn., 58, 119–124.
Merchant H., Harrington D. L., Meck W. H. (2013a). Neural basis of the perception and estimation of time. Annu. Rev. Neurosci., 36, 313–336.
Merchant H., Perez O., Zarco W., Gamez J. (2013b). Interval tuning in the primate medial premotor cortex as a general timing mechanism. J. Neurosci., 32, 9082–9096.
Morillon B., Kell C. A., Giraud A. L. (2009). Three stages and four neural systems in time estimation. J. Neurosci., 25, 14803–14811.
Morishima Y., Akaishi R., Yamada Y., Okuda J., Toma K., Sakai K. (2009). Task-specific signal transmission from prefrontal cortex in visual selective attention. Nat. Neurosci., 12, 85–91.
Nichelli P. (1996). Time perception measurements in neuropsychology. In Paster M. A., Artieda J. (Eds.), Time, internal clocks and movement (pp. 187–204). Amsterdam: Elsevier.
Noguchi Y., Kakigi R. (2006). Time representations can be made from nontemporal information in the brain: an MEG study. Cereb. Cortex, 16, 1797–1808.
Oliveri M., Koch G., Salerno S., Torriero S., Lo Gerfo E., Caltagirone C. (2009). Representation of time intervals in the right posterior parietal cortex: Implications for a mental time line. NeuroImage, 46, 1173–1179.
Paule M. G., Meck W. H., McMillan D. E., McClure G. Y. H., Bateson M., Popke E. J., Chelonis J. J., Hinton S. C. (1999). The use of timing behaviors in animals and humans to detect drug and/or toxicant effects. Neurotoxicol. Teratol., 21, 491–502.
Penton-Voak I. S., Edwards H., Percival A., Wearden J. H. (1996). Speeding up an internal clock in humans? Effects of click trains on subjective duration. J. Exp. Psychol. Anim. Behav. Process., 22, 307–320.
Perini F., Cattaneo L., Carrasco M., Schwarzbach J. V. (2012). Occipital transcranial magnetic stimulation has an activity-dependent suppressive effect. J. Neurosci., 32, 12361–12365.
Piazza M., Izard V., Pinel P., Le Bihan D., Dehaene S. (2004). Tuning curves for approximate numerosity in the human intraparietal sulcus. Neuron, 44, 547–555.
Piras F., Coull J. T. (2011). Implicit, predictive timing draws upon the same scalar representation of time as explicit timing. PLoS ONE, 6, e18203.
Rakitin B. C., Gibbon J., Penney T. B., Malapani C., Hinton S. C., Meck W. H. (1998). Scalar expectancy theory and peak-interval timing in humans. J. Exp. Psychol. Anim. Behav. Process., 24, 15–33.
Rattat A. C., Droit-Volet S. (2012). What is the best and easiest method of preventing counting in different temporal tasks? Behav. Res. Methods, 44, 67–80.
Repp B. H. (2005). Sensorimotor synchronization: A review of the tapping literature. Psychonomic. Bull. Rev., 12, 969–992.
Repp B. H., Mendlowitz H. B., Hove M. J. (2013). Does rapid auditory stimulation accelerate an internal pacemaker? Don’t bet on it. Timing Time Percept., 1, 65–76.
Rossi S., Hallett M., Rossini P. M., Pascual-Leone A.; The Safety of TMS Consensus Group (2009). Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin. Neurophysiol., 120, 2008–2039.
Sack A. T., Cohen Kadosh R., Schuhmann T., Moerel M., Walsh V., Goebel R. (2009). Optimizing functional accuracy of TMS in cognitive studies: A comparison of methods. J. Cogn. Neurosci., 21, 207–221.
Salvioni P., Murray M. M., Kalmbach L., Bueti D. (2013). How the visual brain encodes and keeps track of time. J. Neurosci., 33, 12423–12429.
Schwartze M., Rothermich K., Kotz S. A. (2012). Functional dissociation of the pre-SMA and SMA-proper in temporal processing. NeuroImage, 60, 290–298.
Shi Z., Church R. M., Meck W. H. (2013). Bayesian optimization of time perception. Trends Cogn. Sci., 17, 556–564.
Shuler M. G., Bear M. F. (2006). Reward timing in the primary visual cortex. Science, 311, 1606–1609.
Siebner H. R., Bergmann T. O., Bestmann S., Massimini M., Mochizuki H., Bohning D. E. et al., (2009). Consensus paper: Combining transcranial stimulation with neuroimaging. Brain Stimul., 2, 58–80.
Silvanto J., Muggleton N., Walsh V. (2008). State-dependency in brain stimulation studies of perception and cognition. Trends Cogn. Sci., 12, 447–454.
Teki S., Grube M., Griffiths T. D. (2012). A unified model of time perception accounts for duration-based and beat-based timing mechanisms. Front. Integr. Neurosci., 5, 90.
Theoret H., Haque J., Pascual-Leone A. (2001). Increased variability of paced finger tapping accuracy following repetitive magnetic stimulation of the cerebellum in humans. Neurosci. Lett., 306, 29–32.
Thut G., Veniero D., Romei V., Miniussi C., Schyns P., Gross J. (2011). Rhythmic TMS causes local entrainment of natural oscillatory signatures. Curr. Biol., 21, 1176–1185.
Treisman M. (1963). Temporal discrimination and the indifference interval: Implications for a model of the ‘internal clock’. Psychol. Monogr., 77, 1–31.
Treisman M. (2013). The information-processing model of timing (Treisman, 1963): Its sources and further development. Timing Time Percept., 1, 131–158.
Treisman M., Faulkner A., Naish P. L. (1992). On the relation between time perception and the timing of motor action: Evidence for a temporal oscillator controlling the timing of movement. Q. J. Exp. Psychol. A, 45, 235–263.
Tse C. Y., Penney T. B. (2006). Preattentive timing of empty intervals is from marker offset to onset. Psychophysiology, 43, 172–179.
van Rijn H., Gu B.-M., Meck W. H. (2014). Dedicated clock/timing-circuit theories of time perception and timed performance. In Merchant H., de Lafuente V. (Eds.), Neurobiology of interval timing (pp. 75–99). New York, NY: Springer-Verlag.
van Rijn H., Kononowicz T. W., Meck W. H., Ng K. K., Penney T. B. (2011). Contingent negative variation and its relation to time estimation: A theoretical evaluation. Front. Integr. Neurosci., 5, 91.
Verstynen T., Konkle T., Ivry R. B. (2006). Two types of TMS-induced movement variability after stimulation of the primary motor cortex. J. Neurophysiol., 96, 1018–1029.
Walsh V. (2003). A theory of magnitude: Common cortical metrics of time, space and quantity. Trends Cogn. Sci., 7, 483–488.
Walsh V., Cowey A. (2000). Transcranial magnetic stimulation and cognitive neuroscience. Nat. Rev. Neurosci., 1, 73–80.
Wearden J. H., Denovan L., Fakhri M., Haworth R. (1997). Scalar timing in temporal generalization in humans with longer stimulus durations. J. Exp. Psychol. Anim. Behav. Process., 23, 502–511.
Wearden J. H., Jones L. A. (2013). Explaining between-group differences in performance on timing tasks. Q. J. Exp. Psychol., 66, 179–199.
Wiener M., Coslett H. B. (2008). Disruption of timing in a subject with probable frontotemporal dementia. Neuropsychologia, 46, 1927–1939.
Wiener M., Hamilton R., Turkeltaub P. E., Matell M. S., Coslett H. B. (2010a). Fast forward: Supramarginal gyrus stimulation alters time measurement. J. Cogn. Neurosci., 22, 23–31.
Wiener M., Turkeltaub P. E., Coslett H. B. (2010b). The image of time: A voxel-wise meta-analysis. NeuroImage, 49, 1728–1740.
Wiener M., Turkeltaub P. E., Coslett H. B. (2010c). Implicit timing tasks activate the left inferior parietal cortex. Neuropsychologia, 48, 3967–3971.
Wiener M., Matell M. S., Coslett H. B. (2011). Multiple mechanisms for temporal processing. Front. Integr. Neurosci., 5, 31.
Wiener M., Kliot D., Turkeltaub P. E., Hamilton R. H., Wolk D. A., Coslett H. B. (2012). Parietal influence on temporal encoding indexed by simultaneous transcranial magnetic stimulation and electroencephalography. J. Neurosci., 32, 12258–12267.
Wing A. M., Kristofferson A. (1973). Response delays and the timing of discrete motor responses. Percept. Psychophys., 14, 5–12.
Xuan B., Zhang D., He S., Chen X. (2007). Larger stimuli are judged to last longer. J. Vis., 7, 1–5.
Zelaznik H. N., Spencer R. M., Ivry R. B. (2002). Dissociation of explicit and implicit timing in repetitive tapping and drawing movements. J. Exp. Psychol. Hum. Percept. Perform., 28, 575–588.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 675 | 135 | 16 |
Full Text Views | 238 | 8 | 0 |
PDF Views & Downloads | 53 | 14 | 0 |
The study of the neural basis of time perception has seen a resurgence of interest within the past decade. A variety of these studies have included the use of transcranial magnetic stimulation (TMS), a noninvasive technique for stimulating discrete regions of the surface of the brain. Here, the results of these studies are reviewed and their conclusions are interpreted within a context-dependent framework. However, the use of TMS as an investigatory technique has much unexplored potential that may be particularly beneficial to the study of time perception. As such, considerations are made regarding the design of TMS studies of time perception and future directions are outlined that may be utilized to further elucidate the neural basis of timing in the human brain.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 675 | 135 | 16 |
Full Text Views | 238 | 8 | 0 |
PDF Views & Downloads | 53 | 14 | 0 |