Temporal Perceptual Learning

in Timing & Time Perception
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Our interaction with the environment and each other is inherently time-varying in nature. It is thus not surprising that the nervous systems of animals have evolved sophisticated mechanisms to not only tell time, but to learn to discriminate and produce temporal patterns. Indeed some of the most sophisticated human behaviors, such as speech and music, would not exist if the human brain was unable to learn to discriminate and produce temporal patterns. Compared to the study of other forms of learning, such as visual perceptual learning, the study of the learning of interval and temporal pattern discrimination in the subsecond range is relatively recent. A growing number of studies over the past 15 years, however, have established that perceptual and motor timing undergo robust learning. One of the principles to have emerged from these studies is that temporal learning is generally specific to the trained interval, an observation that has important implications to the neural mechanisms underlying our ability to tell time.

Temporal Perceptual Learning

in Timing & Time Perception

Sections

References

AhissarM.HochsteinS. (1997). Task difficulty and the specificity of perceptual learning. Nature387401406.

AhrensM. B.SahaniM. (2011). Observers exploit stochastic models of sensory change to help judge the passage of time. Curr. Biol.21200206.

AikenL. R.Jr. (1965). Learning and retention in the estimation of short time intervals: A circuit and a study. Percept. Mot. Skills20509517.

AllmanM. J.MeckW. H. (2012). Pathophysiological distortions in time perception and timed performance. Brain135656677.

AllmanM. J.PelphreyK. A.MeckW. H. (2012). Developmental neuroscience of time and number: Implications for autism and other neurodevelopmental disabilities. Front. Integr. Neurosci.67.

AllmanM. J.TekiS.GriffithsT. D.MeckW. H. (2014). Properties of the internal clock: First- and second-order principles of subjective time. Annu. Rev. Psychol.65743771.

BartoloR.MerchantH. (2009). Learning and generalization of time production in humans: Rules of transfer across modalities and interval durations. Exp. Brain Res.19791100.

BratzkeD.SeifriedT.UlrichR. (2012). Perceptual learning in temporal discrimination: Asymmetric cross-modal transfer from audition to vision. Exp. Brain Res.221205210.

BrodyC. D.RomoR.KepecsA. (2003). Basic mechanisms for graded persistent activity: Discrete attractors, continuous attractors, and dynamic representations. Curr. Opin. Neurobiol.13204211.

BuetiD.LasaponaraS.CercignaniM.MacalusoE. (2012). Learning about time: Plastic changes and interindividual brain differences. Neuron75725737.

BuhusiC. V.MeckW. H. (2005). What makes us tick? Functional and neural mechanisms of interval timing. Nat. Rev. Neurosci.6755765.

BuonomanoD. V. (2000). Decoding temporal information: A model based on short-term synaptic plasticity. J. Neurosci.2011291141.

BuonomanoD. V.BramenJ.KhodadadifarM. (2009). Influence of the interstimulus interval on temporal processing and learning: Testing the state-dependent network model. Philos. Trans. R. Soc. Lond. B Biol. Sci.36418651873.

BuonomanoD. V.KarmarkarU. R. (2002). How do we tell time? Neuroscientist84251.

BuonomanoD. V.LajeR. (2010). Population clocks: Motor timing with neural dynamics. Trends Cogn. Sci.14520527.

BuonomanoD. V.MaukM. D. (1994). Neural network model of the cerebellum: Temporal discrimination and the timing of motor responses. Neural Comput.63855.

BuonomanoD. V.MerzenichM. M. (1995). Temporal information transformed into a spatial code by a neural network with realistic properties. Science26710281030.

BurkM. H.HumesL. E. (2007). Effects of training on speech recognition performance in noise using lexically hard words. J. Speech Lang. Hear. Res.502540.

CappellettiM.GessaroliE.HithersayR.MitoloM.DidinoD.KanaiR.KadoshR. C.WalshV. (2013). Transfer of cognitive training across magnitude dimensions achieved with concurrent brain stimulation of the parietal lobe. J. Neurosci.331489914907.

CarlsonB. A. (2009). Temporal-pattern recognition by single neurons in a sensory pathway devoted to social communication behavior. J. Neurosci.2994179428.

ChubykinA. A.RoachE. B.BearM. F.ShulerM. G. (2013). A cholinergic mechanism for reward timing within primary visual cortex. Neuron77723735.

CicchiniG. M.ArrighiR.CecchettiL.GiustiM.BurrD. C. (2012). Optimal encoding of interval timing in expert percussionists. J. Neurosci.3210561060.

CoullJ. T.ChengR. K.MeckW. H. (2011). Neuroanatomical and neurochemical substrates of timing. Neuropsychopharmacology36325.

CreelmanC. D. (1962). Human discrimination of auditory duration. J. Acoust. Soc. Am.34582593.

CroweD. A.AverbeckB. B.ChafeeM. V. (2010). Rapid sequences of population activity patterns dynamically encode task-critical spatial information in parietal cortex. J. Neurosci.301164011653.

DurstewitzD. (2003). Self-organizing neural integrator predicts interval times through climbing activity. J. Neurosci.2353425353.

EdwardsC. J.LearyC. J.RoseG. J. (2007). Counting on inhibition and rate-dependent excitation in the auditory system. J. Neurosci.271338413392.

FialaJ. C.GrossbergS.BullockD. (1996). Metabotropic glutamate receptor activation in cerebellar Purkinje cells as substrate for adaptive timing of the classically conditioned eye-blink response. J. Neurosci.1637603774.

GenovesioA.TsujimotoS.WiseS. P. (2009). Feature-and order-based timing representations in the frontal cortex. Neuron63254266.

GettyD. (1975). Discrimination of short temporal intervals: A comparison of two models. Percept. Psychophys.1818.

GhoseG. M.MaunsellJ. H. (2002). Attentional modulation in visual cortex depends on task timing. Nature419616620.

GibbonJ.ChurchR. M.MeckW. H. (1984). Scalar timing in memory. Ann. NY Acad. Sci.4235277.

GoelA.BuonomanoD. V. (2014). Timing as an intrinsic property of neural networks: Evidence from in vivo and in vitro experiments. Philos. Trans. R. Soc. Lond. B Biol. Sci.36920120460.

GoldstoneS.GoldfarbJ. L. (1966). The perception of time by children. In KiddA. H.RivoireJ. L. (Eds.) Perceptual development in children (pp.  445486). New York, NY: International University Press.

GrondinS.BissonN.GagnonC.GamacheP.-L.MatteauA.-A. (2009). Little to be expected from auditory training for improving visual temporal discrimination. NeuroQuantology795102.

GrondinS.KilleenP. R. (2009). Tracking time with song and count: Different Weber functions for musicians and nonmusicians. Atten. Percept. Psychophys.7116491654.

GrondinS.UlrichR. (2011). Duration discrimination performance: No cross-modal transfer from audition to vision even after massive perceptual learning. In VatakisA.EspositoA.GiagkouM.CumminsF.PapadelisG. (Eds.) Multidisciplinary aspects of time and time perception (pp.  92100). Berlin, Heidelberg: Springer Verlag.

HaßJ.BlaschkeS.RammsayerT.HerrmannJ. M. (2008). A neurocomputational model for optimal temporal processing. J. Comp. Neurosci.25449464.

HeronJ.Aaen-StockdaleC.HotchkissJ.RoachN. W.McGrawP. V.WhitakerD. (2012). Duration channels mediate human time perception. Proc. Biol. Sci.279690698.

HikosakaO.NakaharaH.RandM. K.SakaiK.LuX.NakamuraK.MiyachiS.DoyaK. (1999). Parallel neural networks for learning sequential procedures. Trends Neurosci.22464471.

HikosakaO.NakamuraK.SakaiK.NakaharaH. (2002). Central mechanisms of motor skill learning. Curr. Opin. Neurobiol.12217222.

IvryR. B.HazeltineR. E. (1995). Perception and production of temporal intervals across a range of durations: Evidence for a common timing mechanism. J. Exp. Psychol. Hum. Percept. Perform.21318.

IvryR. B.RichardsonT. C. (2002). Temporal control and coordination: The multiple timer model. Brain Cogn.48117132.

IvryR. B.SchlerfJ. E. (2008). Dedicated and intrinsic models of time perception. Trends Cogn. Sci.12273280.

IvryR. B.SpencerR. M. (2004). The neural representation of time. Curr. Opin. Neurobiol.14225232.

JamesW. (1890). The principles of psychology ( Vol. 2). London: MacMillan.

JanssenP.ShadlenM. N. (2005). A representation of the hazard rate of elapsed time in the macaque area LIP. Nat. Neurosci.8234241.

JinD. Z.FujiiN.GraybielA. M. (2009). Neural representation of time in cortico-basal ganglia circuits. Proc. Natl Acad. Sci. U.S.A.1061915619161.

JohnsonH. A.GoelA.BuonomanoD. V. (2010). Neural dynamics of in vitro cortical networks reflects experienced temporal patterns. Nat. Neurosci.13917919.

KarmarkarU. R.BuonomanoD. V. (2003). Temporal specificity of perceptual learning in an auditory discrimination task. Learn. Mem.10141147.

KimJ. H.LeeS. H.SohnH. J.LeeJ.ChwaeY. J.ParkS.KimK.ShinH. J. (2012). The immune response induced by DNA vaccine expressing nfa1 gene against Naegleria fowleri. Parasitol. Res.11123772384.

KostarakosK.HedwigB. (2012). Calling song recognition in female crickets: Temporal tuning of identified brain neurons matches behavior. J. Neurosci.3296019612.

KristoffersonA. B. (1980). A quantal step function in duration discrimination. Percept. Psychophys.27300306.

LajeR.BuonomanoD. V. (2013). Robust timing and motor patterns by taming chaos in recurrent neural networks. Nat. Neurosci.16925933.

LajeR.ChengK.BuonomanoD. V. (2011). Learning of temporal motor patterns: An analysis of continuous vs. reset timing. Front. Integr. Neurosci.561.

LapidE.UlrichR.RammsayerT. (2008). On estimating the difference limen in duration discrimination tasks: A comparison of the 2AFC and the reminder task. Percept. Psychophys.70291305.

LapidE.UlrichR.RammsayerT. (2009). Perceptual learning in auditory temporal discrimination: No evidence for a cross-modal transfer to the visual modality. Psychon. Bull. Rev.16382389.

LebedevM. A.O’DohertyJ. E.NicolelisM. A. L. (2008). Decoding of temporal intervals from cortical ensemble activity. J. Neurophysiol.99166186.

LeonM. I.ShadlenM. N. (2003). Representation of time by neurons in the posterior parietal cortex of the macaque. Neuron38317327.

LevittH. (1971). Transformed up-down methods in psychoacoustics. J. Acoust. Soc. Am.49(Suppl. 2) 467+.

MatellM. S.MeckW. H. (2004). Cortico-striatal circuits and interval timing: Coincidence detection of oscillatory processes. Cogn. Brain Res.21139170.

MatellM. S.MeckW. H.NicolelisM. A. (2003). Interval timing and the encoding of signal duration by ensembles of cortical and striatal neurons. Behav. Neurosci.117760773.

MatthewsW. J.GrondinS. (2012). On the replication of Kristofferson’s (1980) quantal timing for duration discrimination: Some learning but no quanta and not much of a Weber constant. Atten. Percept. Psychophys.7410561072.

MaukM. D.BuonomanoD. V. (2004). The neural basis of temporal processing. Annu. Rev. Neurosci.27307340.

MaukM. D.DoneganN. H. (1997). A model of Pavlovian eyelid conditioning based on the synaptic organization of the cerebellum. Learn. Mem.3130158.

MaukM. D.MedinaJ. F.NoresW. L.OhyamaT. (2000). Cerebellar function: Coordination, learning or timing? Curr. Biol.10R522R525.

MeckW. H.ChurchR. M. (1982). Abstraction of temporal attributes. J. Exp. Psychol. Anim. Behav. Process.8226243.

MeckW. H.PenneyT. B.PouthasV. (2008). Cortico-striatal representation of time in animals and humans. Curr. Opin. Neurobiol.18145152.

MedinaJ. F.MaukM. D. (2000). Computer simulation of cerebellar information processing. Nat. Neurosci.312051211.

MedinaJ. F.GarciaK. S.NoresW. L.TaylorN. M.MaukM. D. (2000). Timing mechanisms in the cerebellum: testing predictions of a large-scale computer simulation. J. Neurosci.2055165525.

MedinaJ. F.NoresW. L.MaukM. D. (2002). Inhibition of climbing fibres is a signal for the extinction of conditioned eyelid responses. Nature416330333.

MeeganD. V.AslinR. N.JacobsR. A. (2000). Motor timing learned without motor training. Nat. Neurosci.3860862.

MehnerE. M. (1885). Die Lehre vom Zeitsinn. Philol. Stud.2546602.

MerchantH.BartoloR.MéndezJ. C.PérezO.ZarcoW.MendozaG. (2011). What can be inferred from multiple–task psychophysical studies about the mechanisms for temporal processing. In VatakisA.EspositoA.GiagkouM.CumminsF.PapadelisG. (Eds.) Multidisciplinary aspects of time and time perception (pp.  207229). Berlin, Heidelberg: Springer Verlag.

MerchantH.HarringtonD. L.MeckW. H. (2013). Neural basis of the perception and estimation of time. Annu. Rev. Neurosci.36313336.

MerchantH.PerezO.ZarcoW.GamezJ. (2013). Interval tuning in the primate medial premotor cortex as a general timing mechanism. J. Neurosci.3390829096.

MiallC. (1989). The storage of time intervals using oscillating neurons. Neural Comput.1359371.

MitaA.MushiakeH.ShimaK.MatsuzakaY.TanjiJ. (2009). Interval time coding by neurons in the presupplementary and supplementary motor areas. Nat. Neurosci.12502507.

NagarajanS. S.BlakeD. T.WrightB. A.BylN.MerzenichM. M. (1998). Practice–related improvements in somatosensory interval discrimination are temporally specific but generalize across skin location, hemisphere, and modality. J. Neurosci.1815591570.

NikiH.WatanabeM. (1979). Prefrontal and cingulate unit activity during timing behavior in the monkey. Brain Res.171213224.

O’ReillyJ. X.McCarthyK. J.CapizziM.NobreA. C. (2008). Acquisition of the temporal and ordinal structure of movement sequences in incidental learning. J. Neurophysiol.9927312735.

PastalkovaE.ItskovV.AmarasinghamA.BuzsákiG. (2008). Internally generated cell assembly sequences in the rat hippocampus. Science32113221327.

PerrettS. P.RuizB. P.MaukM. D. (1993). Cerebellar cortex lesions disrupt learning-dependent timing of conditioned eyelid responses. J. Neurosci.1317081718.

PlanettaP. J.ServosP. (2008). Somatosensory temporal discrimination learning generalizes to motor interval production. Brain Res.12335157.

QuintanaJ.FusterJ. M. (1992). Mnemonic and predictive functions of cortical neurons in a memory task. NeuroReport3721724.

RainerG.RaoS. C.MillerE. K. (1999). Prospective coding for objects in primate prefrontal cortex. J. Neurosci.1954935505.

RammsayerT. H. (1994). Effects of practice and signal energy on duration discrimination of brief auditory intervals. Percept. Psychophys.55454464.

RammsayerT. H.ButtkusF.AltenmullerE. (2012). Musicians do better than nonmusicians in both auditory and visual timing tasks. Music Percept.308596.

ReutimannJ.YakovlevV.FusiS.SennW. (2004). Climbing neuronal activity as an event-based cortical representation of time. J. Neurosci.2432953303.

RousseauR.PoirierJ.LemyreL. (1983). Duration discrimination of empty time intervals marked by intermodal pulses. Percept. Psychophys.34541548.

SchneiderB. A.GhoseG. M. (2012). Temporal production signals in parietal cortex. PLoS Biol.10e1001413.

ShiZ.ChurchR. M.MeckW. H. (2013). Bayesian optimization of time perception. Trends Cogn. Sci.17556564.

ShulerM. G.BearM. F. (2006). Reward timing in the primary visual cortex. Science31116061609.

SimenP.BalciF.CohenJ. D.HolmesP. (2011). A model of interval timing by neural integration. J. Neurosci.3192389253.

SohnH.LeeS.-H. (2013). Dichotomy in perceptual learning of interval timing: Calibration of mean accuracy and precision differ in specificity and time course. J. Neurophysiol.109344362.

TreismanM. (1963). Temporal discrimination and the indifference interval: Implications for a model of the ‘internal clock’. Psychol. Monogr.77131.

UllenF.BengtssonS. L. (2003). Independent processing of the temporal and ordinal structure of movement sequences. J. Neurophysiol.9037253735.

Van WassenhoveV.NagarajanS. S. (2007). Auditory cortical plasticity in learning to discriminate modulation rate. J. Neurosci.2726632672.

WarmJ. S.StutzR. M.VassoloP. A. (1975). Itermodal transfer in temporal discrimination. Percept. Psychophys.18281286.

WestheimerG. (1999). Discrimination of short time intervals by the human observer. Exp. Brain Res.129121126.

WrightB. A.BuonomanoD. V.MahnckeH. W.MerzenichM. M. (1997). Learning and generalization of auditory temporal-interval discrimination in humans. J. Neurosci.1739563963.

WrightB. A.WilsonR. M.SabinA. T. (2010). Generalization lags behind learning on an auditory perceptual task. J. Neurosci.301163511639.

Figures

  • View in gallery

    Temporal discrimination tasks. Two-interval alternative forced choice tasks (2AFC). (A) Schematic representation of a single trial where a standard (T) and a comparison duration (T±ΔT) are sequentially presented. By pressing one of two response keys subjects have to decide which one of the two intervals lasted longer. After the response a feedback about performance accuracy is provided. In an alternate version of this 2AFC task, the comparison stimulus is equal to T+ΔT, and the order of the standard and comparison are randomized. (B) Trial representation of a 2AFC task where only a single comparison duration (T±ΔT) is presented in every trial. This figure is published in colour in the online version.

  • View in gallery

    Interval specific learning and interval generalization. (A) Pretest and posttest interval discrimination thresholds for three different conditions: 100 ms standard interval bounded by a 1 kHz tone; 100 ms standard interval bounded by a 3.75 kHz tone; and a 200 ms interval bounded by 1 kHz tones. Between the pre- and posttests, subjects were trained for 10 days on the 100 ms/1 kHz condition (solid bars). In addition to the learning in the trained condition (solid bars), subjects demonstrated robust generalization to the same-interval-different-frequency condition (100 ms/3.75 kHz), but not to the novel interval. (B) Data from a separate experiment in which subjects were trained on the 200 ms/1 kHz condition (solid bars). Again, in addition to learning the trained condition (solid bars), there was robust generalization to the same-interval-different-frequency condition, but not to a novel interval. Modified from Karmarkar and Buonomano (2003). This figure is published in colour in the online version.

  • View in gallery

    Improvements in precision and accuracy during learning of a complex motor timing task. Subjects learned to produce an aperiodic spatiotemporal pattern consisting of a sequence of six timed responses (six component intervals) using four fingers (upper inset in Panel A). (A) Single subject results from the first (upper graph) and the third (lower graph) day of training. Light dashed lines represent the response distributions, and the solid lines represent Gaussian fits of the data. (B) Average (12 subjects) precision (top) and accuracy (bottom) of each element of the pattern across three days of training. Both the precision (F2,22=73, p<106) and accuracy (F2,22=7.2, p<0.005) exhibited a main effect of training across the three days. Modified from Experiment 2 from Laje et al. (2011). This figure is published in colour in the online version.

  • View in gallery

    Timing-related plasticity in the human brain. (A, B) Brain areas showing training-related plasticity as measured by fMRI. In both panels the contrast tested is: (trained duration–untrained duration) PRE > (trained duration–untrained duration) POST. Statistical threshold was set to pFWE<0.05 corrected for multiple comparisons. Activations are overlaid on the single subject T1-MNI template. For all cluster of voxels we plot the parameter estimates for the ΔT1 condition (i.e., the actual discrimination threshold) in pre (light shade) and post-training (dark shade) fMRI sessions. A.U. is arbitrary unit. (A) Upper row shows left and right mid-occipital regions activated during the visual task (dark bars). The lower row shows the left posterior insula activated in both the visual (dark) and the auditory (light) task. (B) Left inferior parietal cluster activated only in the auditory task (light). (C) Training-related plasticity as measured by grey and white-matter structural indexes. The panel shows right cerebellar clusters where grey matter volume (GM) and fractional anisotropy (WM) were greater in post compared to pre-training session. Statistical threshold was set to pFWE<0.05 corrected for multiple comparisons. For both clusters we also show the correlations between the structural indexes (i.e., T1 post–T1 pre/T1 pre and FA post–FA pre/FA pre) and the behavioral performance. Clusters are overlaid on the single subject T1 MNI template. Modified from Figures 2 and 3 from Bueti et al. (2012). This figure is published in colour in the online version.

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 13 13 7
Full Text Views 19 19 19
PDF Downloads 2 2 2
EPUB Downloads 0 0 0