Interval Timing, Dopamine, and Motivation

in Timing & Time Perception
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

The dopamine clock hypothesis suggests that the dopamine level determines the speed of the hypothetical internal clock. However, dopaminergic function has also been implicated for motivation and thus the effect of dopaminergic manipulations on timing behavior might also be independently mediated by altered motivational state. Studies that investigated the effect of motivational manipulations on peak responding are reviewed in this paper. The majority of these studies show that a higher reward magnitude leads to a leftward shift, whereas reward devaluation leads to a rightward shift in the initiation of timed anticipatory behavior, typically in the absence of an effect on the timing of response termination. Similar behavioral effects are also present in a number of studies that investigated the effect of dopamine agonists and dopamine-related genetic factors on peak responding. These results can be readily accounted for by independent modulation of decision-thresholds for the initiation and termination of timed responding.

Interval Timing, Dopamine, and Motivation

in Timing & Time Perception

Sections

References

AbnerR. T.EdwardsT.DouglasA.BrunnerD. (2001). Pharmacology of temporal cognition in two mouse strains. Int. J. Comp. Psychol.14189210.

AdamsC. D. (1981). Variations in the sensitivity of instrumental responding to reinforcer devaluation. Q. J. Exp. Psychol. B347798.

BadianiA.StewartJ. (1999). Long-lasting sensitization to the accelerating effects of amphetamine on the speed of an internal clock. Behav. Brain Res.100217223.

BalcıF.PapachristosE. B.GallistelC. R.BrunnerD.GibsonJ.ShumyatskyG. P. (2008). Interval-timing in the genetically modified mouse: A simple paradigm. Genes Brain Behav.7373384.

BalcıF.FreestoneD.GallistelC. R. (2009a). Risk assessment in man and mouse. Proc. Natl Acad. Sci. USA10624592463.

BalcıF.GallistelC. R.AllenB. D.FrankK.GibsonJ.BrunnerD. (2009b). Acquisition of peak responding: What is learned? Behav. Proc.806775.

BalcıF.LudvigE. A.AbnerR.ZhuangX.PoonP.BrunnerD. (2010a). Motivational effects on interval timing in dopamine transporter (DAT) knock-down mice. Brain Res.13258999.

BalcıF.LudvigE. A.BrunnerD. (2010b). Within-session modulation of timed anticipatory responding: When to start responding. Behav. Proc.85204206.

BalcıF.WienerM.CavdarogluB.CoslettB. H. (2013). Epistasis effects of dopamine genes on interval timing and reward magnitude in humans. Neuropsychologia51293308.

BalleineB. W.DickinsonA. (1998). Goal-directed instrumental action: Contingency and incentive learning and their cortical substrates. Neuropharmacology37407419.

BerridgeK. C. (2007). The debate over dopamine’s role in reward: The case for incentive salience. Psychopharmacology191391431.

BerridgeK. C.RobinsonT. E. (1998). What is the role of dopamine in reward: Hedonic impact, reward learning, or incentive salience? Brain Res. Rev.28309369.

BizotJ. C. (1997). Effects of psychoactive drugs on temporal discrimination in rats. Behav. Pharmacol.8293308.

BuhusiC. V.MeckW. H. (2005). What makes us tick? Functional and neural mechanisms of interval timing. Nat. Rev. Neurosci.6755765.

BuhusiC. V.AzizD.WinslowD.CarterR. E.SwearingenJ. E.BuhusiM. C. (2009). Interval timing accuracy and scalar timing in C57BL/6 mice. Behav. Neurosci.12311021113.

CagniardB.BalsamP. D.BrunnerD.ZhuangX. (2006). Mice with chronically elevated dopamine exhibit enhanced motivation, but not learning, for a food reward. Neuropsychopharmacology3113621370.

CataniaA. C. (1970). Reinforcement schedules and psychophysical judgements: A study of some temporal properties of behavior. In SchoenfeldW. N. (Ed.) The theory of reinforcement schedules (pp.  142). New York, NY, USA: Appleton-Century-Croft.

ÇevikM. O. (2003). Effects of methamphetamine on duration discrimination. Behav. Neurosci.117774784.

ChengK.WestwoodR. (1993). Analysis of single trials in pigeons timing performance. J. Exp. Psychol. Anim. Behav. Process.195667.

ChengR. K.AliY. M.MeckW. H. (2007a). Ketamine ‘unlocks’ the reduced clock-speed effect of cocaine following extended training: Evidence for dopamine–glutamate interactions in timing and time perception. Neurobiol. Learn. Mem.88149159.

ChengR. K.HakakO. L.MeckW. H. (2007b). Habit formation and the loss of control of an internal clock: Inverse relationship between the level of baseline training and the clock-speed enhancing effects of methamphetamine. Psychopharmacology (Berl.)193351362.

ChiangT.-J.Al-RuwaiteaA. S. A.MobiniS.HoM.-Y.BradshawC. M.SzabadiE. (2000). The effect of D-amphetamine on performance on two operant timing schedules. Psychopharmacology150170184.

ChurchR. M.MillerK. D.MeckW. H.GibbonJ. (1991). Symmetrical and asymmetrical sources of variance in temporal generalization. Anim. Learn. Behav.19207214.

ChurchR. M.MeckW. H.GibbonJ. (1994). Application of scalar timing theory to individual trials. J. Exp. Psychol. Anim. Behav. Process.20135155.

ChurchR. M.LacourseD. M.CrystalJ. D. (1998). Temporal search as a function of the variability of interfood intervals. J. Exp. Psychol. Anim. Behav. Process.24291315.

ÇoşkunF.SayalıC.GürbüzE.BalcıF. (in press). Optimal temporal discrimination. Q. J. Exp. Psychol. doi:10.1080/17470218.2014.944921.

CoullJ. T.ChengR. K.MeckW. H. (2011). Neuroanatomical and neurochemical substrates of timing. Neuropsychopharmacology36325.

DoughtyA. H.RichardsJ. B. (2002). Effects of reinforcer magnitude on responding under differential-reinforcement-of-low-rate schedules of rats and pigeons. J. Exp. Anal. Behav.781730.

DrewM. R.FairhurstS.MalapaniC.HorvitzJ. C.BalsamP. D. (2003). Effects of dopamine antagonists on the timing of two intervals. Pharmacol. Biochem. Behav.75915.

FoxA. E.KyonkaE. G. (2014). Choice and timing in pigeons under differing levels of food deprivation. Behav. Proc.1068290.

GallistelC. R.BalsamP. D.FairhurstS. (2004a). The learning curve: Implications of a quantitative analysis. Proc. Natl Acad. Sci. USA1011312413131.

GallistelC. R.KingA.McDonaldR. (2004b). Sources of variability and systematic error in mouse timing behavior. J. Exp. Psychol. Anim. Behav. Process.30316.

GaltressT.KirkpatrickK. (2009). Reward magnitude effects on temporal discrimination. Learn. Motiv.41108124.

GaltressT.KirkpatrickK. (2010). The role of the nucleus accumbens core in impulsive choice, timing, and reward processing. Behav. Neurosci.1242643.

GaltressT.GarciaA.KirkpatrickK. (2012a). Individual differences in impulsive choice and timing in rats. J. Exp. Anal. Behav.986587.

GaltressT.MarshallA. T.KirkpatrickK. (2012b). Motivation and timing: Clues for modeling the reward system. Behav. Proc.90142153.

GershmanS. J.MoustafaA. A.LudvigE. A. (2014). Time representation in reinforcement learning models of the basal ganglia. Front. Comput. Neurosci.7194. doi:10.3389/fncom.2013.00194.

GibbonJ. (1977). Scalar expectancy theory and Weber’s Law in animal timing. Psychol. Rev.84279325.

GibbonJ.ChurchR. M.MeckW. H. (1984). Scalar timing in memory. In GibbonJ.AllanL. (Eds.) Timing and time perception (pp.  5277). New York, NY, USA: New York Academy of Sciences.

GibbonJ.ChurchR. M. (1990). Representation of time. Cognition372354.

GibbonJ.ChurchR. M. (1992). Comparison of variance and covariance patterns in parallel and serial theories of timing. J. Exp. Anal. Behav.57393406.

GoochC.WienerM.PortugalG.MatellM. (2007). Evidence for separate neural mechanisms for the timing of discrete and sustained responses. Brain Res.1156139151.

GraceR. C.NevinJ. A. (2000). Response strength and temporal control in fixed interval schedules. Anim. Learn. Behav.28313331.

GramlingS. E.FowlerS. C. (1986). Some effects of pimozide and of shifts in sucrose concentration on lick rate, duration, and interlick interval. Pharmacol. Biochem. Behav.25219222.

HattenJ. L.ShullR. L. (1983). Pausing on fixed-interval schedules: Effects of the prior feeder duration. Behav. Anal. Lett.3101111.

JozefowiezJ.StaddonJ. E.CeruttiD. T. (2010). The behavioral economics of choice and interval timing. Psychol. Rev.116519539.

KacelnikA.BrunnerD. (2002). Timing and foraging: Gibbon’s scalar expectancy theory and optimal patch exploitation. Learn. Motiv.33177195.

KilleenP.FettermanJ. G. (1988). A behavioral theory of timing. Psychol. Rev.95274295.

LakeJ. I.MeckW. H. (2013). Differential effects of amphetamine and haloperidol on temporal reproduction: Dopaminergic regulation of attention and clock speed. Neuropsychologia51284292.

LudvigE.ConoverK.ShizgalP. (2007). The effects of reinforcer magnitude on timing in rats. J. Exp. Anal. Behav.87201218.

LudvigE. A.BalciF.SpetchM. L. (2011). Reward magnitude and timing in pigeons. Behav. Proc.86359363.

MacDonaldC. J.ChengR. K.MeckW. H. (2012). Acquisition of ‘Start’ and ‘Stop’ response thresholds in peak-interval timing is differentially sensitive to protein synthesis inhibition in the dorsal and ventral striatum. Front. Integr. Neurosci.610. doi:10.3389/fnint.2012.00010.

MacEwenD.KilleenP. (1991). The effects of rate and amount of reinforcement on the speed of the pacemaker in pigeons’ timing behavior. Anim. Learn. Behav.19164170.

MachadoA.KeenR. (2003). Temporal discrimination in a long operant chamber. Behav. Proc.62157182.

MaggiD.GarbuginoL.HeiseI.NieusT.BalciF.WellsS.Tocchini-ValentiniG. P.MandilloS.NolanP. M.TucciV. (2014). A cross-laboratory investigation of timing endophenotypes in mouse behavior. Timing Time Percept.23540.

MalapaniC.DeweerB.GibbonJ. (2002). Separating storage from retrieval dysfunction of temporal memory in Parkinson’s disease. J. Cogn. Neurosci.14311322.

MalapaniC.FairhurstS. (2002). Scalar timing in animals and humans. Learn. Motiv.33156176.

MalapaniC.RakitinB. C. (2003). Interval timing in the dopamine-depleted basal ganglia: From empirical data to timing theory. In MeckW. H. (Ed.) Functional and neural mechanisms of interval timing (pp.  485514). Boca Raton, FL, USA: CRC Press.

MaricqA. V.ChurchR. M. (1983). The differential effects of haloperidol and methamphetamine on time estimation in the rat. Psychopharmacology (Berl.)791015.

MaricqA. V.RobertsS.ChurchR. M. (1981). Methamphetamine and time estimation. J. Exp. Psychol. Anim. Behav. Process.71830.

MattellM. S.KingR. K.MeckW. H. (2004). Differential modulation of clock speed by the administration of intermittent versus continuous cocaine. Behav. Neurosci.118(1) 150156.

MatellM. S.AldridgeJ. W.BerridgeK. C. (2006a). Dopamine D1 activation shortens the duration of phases in stereotyped grooming sequences. Behav. Proc.71241249.

MatellM. S.BatemanM.MeckW. H. (2006b). Single-trials analyses demonstrate that increases in clock speed contribute to the methamphetamine-induced horizontal shifts in peak-interval timing functions. Psychopharmacology188201212.

McClureE. A.SaulsgiverK. A.WynneC. D. L. (2005). Effects of D-amphetamine on temporal discrimination in pigeons. Behav. Pharmacol.16193208.

McClureE. A.SaulsgiverK. A.WynneC. D. L. (2009). Manipulating pre-feed, density of reinforcement, and extinction produces disruption in the location variation of a temporal discrimination task in pigeons. Behav. Proc.828589.

MeckW. H. (1983). Selective adjustment of the speed of internal clock and memory processes. J. Exp. Psychol. Anim. Behav. Process.9171201.

MeckW. H. (1986). Affinity for the dopamine D2 receptor predicts neuroleptic potency in decreasing the speed of an internal clock. Pharmacol. Biochem. Behav.2511851189.

MeckW. H. (1988). Internal clock and reward pathways share physiologically similar information-processing stages. In CommonsM. L.ChurchR. M.StellarJ. R.WagnerA. R. (Eds.) Quantitative analyses of behavior: Biological determinants of reinforcement (pp.  121138). Hillsdale, NJ, USA: Erlbaum.

MeckW. H. (1996). Neuropharmacology of timing and time perception. Cogn. Brain Res.3227242.

MeckW. H. (2006). Neuroanatomical localization of an internal clock: A functional link between mesolimbic, nigrostriatal, and mesocortical dopaminergic systems. Brain Res.110993107.

MeckW. H.WilliamsC. L. (1997). Characterization of the facilitative effects of perinatal choline supplementation on timing and temporal memory. Neuroreport828312835.

OdumA. L.LievingL. M.SchaalD. W. (2002). Effects of D-amphetamine in a temporal discrimination procedure: Selective changes in timing or rate dependency? J. Exp. Anal. Behav.78195214.

OdumA. L.WardR. D. (2007). Characterizing the effects of D-amphetamine on temporal discrimination. Behav. Proc.75156166.

PapachristosE. B.GallistelC. R. (2006). Autoshaped head poking in the mouse: A quantitative analysis of the learning curve. J. Exp. Anal. Behav.85293308.

PatersonN. E.BalciF.CampbellU.OlivierB.HananiaT. (2011). The triple reuptake inhibitor DOV216,303 exhibits limited antidepressant-like properties in the differential reinforcement of low-rate 72-sec responding assay, likely due to dopamine reuptake inhibition. J. Psychopharmacol.2513571364.

PeciñaS.CagniardB.BerridgeK. C.AldridgeJ. W.ZhuangX. (2003). Hyperdopaminergic mutant mice have higher ‘wanting’ but not ‘liking’ for sweet rewards. J. Neurosci.2393959402.

PenneyT. B.GibbonJ.MeckW. H. (2008). Categorical scaling of duration bisection in pigeons (Columba livia), mice (Mus musculus), and humans (Homo sapiens). Psychol. Sci.1911021108.

PlowrightC. M. S.ChurchD.BehnkeP.SilvermanA. (2000). Time estimation by pigeons on a fixed interval: The effect of pre-feeding. Behav. Proc.524348.

RakitinB. C.GibbonJ.PenneyT. B.MalapaniC.HintonS. C.MeckW. H. (1998). Scalar expectancy theory and peak-interval timing in humans. J. Exp. Anal. Behav.241533.

RammsayerT. (1989). Dopaminergic and serotoninergic influence on duration discrimination and vigilance. Pharmacopsychiatry22(Suppl. 1) 3943.

RammsayerT. H. (1993). On dopaminergic modulation of temporal information processing. Biol. Psychol.36209222.

RammsayerT. H. (1997). Are there dissociable roles of the mesostriatal and mesolimbocortical dopamine systems on temporal information processing in humans? Neuropsychobiology353645.

RammsayerT. H.VogelW. H. (1992). Pharmacologic properties of the internal clock underlying time perception in humans. Neuropsychobiology267180.

ReuterM.SchmitzA.CorrP.HennigJ. (2006). Molecular genetics support Gray’s personality theory: The interaction of COMT and DRD2 polymorphisms predicts the behavioural approach system. Int. J. Neuropsychopharmacol.9155166.

RobertsS. (1981). Isolation of an internal clock. J. Exp. Psychol. Anim. Behav. Process.7242268.

SantiA.WeiseL.KuiperD. (1995). Amphetamine and memory for event duration in rats and pigeons: Disruption of attention to temporal samples rather than changes in the speed of the internal clock. Psychobiology23224232.

SaulsgiverK. A.McClureE. A.WynneC. D. (2006). Effects of D-amphetamine on the behavior of pigeons exposed to the peak procedure. Behav. Proc.71268285.

SchneiderB. A. (1969). A two-state analysis of fixed-interval responding in the pigeon. J. Exp. Anal. Behav.12677687.

SimenP.BalcıF.deSouzaL.HolmesP.CohenJ. D. (2011). A model of interval timing by neural integration. J. Neurosci.3192389253.

SimenP.RivestF.LudvigE. A.BalciF.KilleenP. (2013). Timescale invariance in the pacemaker-accumulator family of timing models. Timing Time Percept.30159188.

SkinnerB. F. (1976). Farewell, my lovely! J. Exp. Anal. Behav.25218.

TaylorK. M.HorvitzJ. C.BalsamP. D. (2007). Amphetamine affects the start of responding in the peak interval timing task. Behav. Proc.74168175.

WallaceD. G.WallaceP. S.FieldE.WhishawI. Q. (2006). Pharmacological manipulations of food protection behavior in rats: Evidence for dopaminergic contributions to time perception during a natural behavior. Brain Res.1112213221.

WardR. D.OdumA. L. (2006). Effects of prefeeding, intercomponent-interval food, and extinction on temporal discrimination and pacemaker rate. Behav. Proc.71297306.

WardR. D.OdumA. L. (2007). Disruption of temporal discrimination and the choose-short effect. Learn. Behav.356070.

WiseR. A. (2004). Dopamine, learning and motivation. Nat. Rev. Neurosci.5483494.

YiL. (2007). Applications of timing theories to a peak procedure. Behav. Proc.75188198.

YinB.LuskN. A.MeckW. H. (in press). Interval-timing protocols and their relevancy to the study of temporal cognition and neurobehavioral genetics. In V. Tucci (Ed.) Neuro-phenome: Cutting-edge approaches and technologies in neurobehavioral genetics. Wiley-Blackwell.

YinH. H.KnowltonB. J.BalleineB. W. (2004). Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning. Eur. J. Neurosci.19181189.

YinH. H.ZhuangX.BalleineB. W. (2006). Instrumental learning in hyperdopaminergic mice. Neurobiol. Learn. Mem.85283288.

ZhuangX.OostingR. S.JonesS. R.GainetdinovR. R.MillerG. W.CaronM. G.HenR. (2001). Hyperactivity and impaired response habituation in hyperdopaminergic mice. Proc. Natl Acad. Sci. USA9819821987.

Figures

  • View in gallery

    Sample raster plots from three representative rats trained on three different FI schedules (FI30s, FI45s, FI60s). Green dots indicate start times whereas the red dots indicate stop times for each PI trial. Data were provided graciously by Russell Church (Church et al., 1998).

  • View in gallery

    Illustration of the temporal decision-making (using a Poisson pacemaker) as it takes place in the PI trials. Illustrative data are shown for a given target interval (i.e., 1000 arbitrary time units) in three different trials, each with a different random LTM memory sample (referred to as LTM in the axis label). Each trial is indicated by a different line thickness. Dashed horizontal line shows the decision threshold, which when crossed initiates responses and when crossed again terminates responses. Solid horizontal lines represent the time windows over which the animal would respond (i.e., run period) in anticipation of the reinforcement in these three different PI trials. Note the dependence of the start and stop times on threshold crossings in different trials. This figure is published in color in the online version.

  • View in gallery

    Top panel: Evolution of the temporal distance metric as a function of trial time for twenty different trials (e.g., under baseline conditions). Bottom panel: Evolution of the same metric after the clock speed was increased by 10% (e.g., after dopamine agonist administration). Dashed horizontal line is the decision threshold utilized for both response initiation and termination. Dotted horizontal line is the decision threshold assumed for response initiation only. Note that in the latter case, the thresholds for initiation and termination of anticipatory responses are independent (e.g., Balcı et al., 2009b; Church et al., 1994; Gallistel et al., 2004b). This figure is published in color in the online version.

  • View in gallery

    Solid curves show the average peak response curves calculated from simulated data for two different target intervals (i.e., 1000 and 2000 arbitrary time units) in the baseline conditions. Top panel: Dashed curves show the average peak response curves after the clock speed was increased by 10%. Dotted curves show the simulated average response curves when the clock speed was kept constant but the start threshold was lowered (farther from the target interval) by a constant amount without changing the stop thresholds (note that the temporal distance metric is a ratio). Bottom panel: Dashed curves show the average peak response curves after the clock speed was decreased by 10%. Dotted curves show the simulated average response curves when the clock speed was kept constant but the start threshold was increased (closer to the target interval) by a constant amount without changing the stop thresholds. The behavioral effects of threshold modulation will be addressed later in the paper. This figure is published in color in the online version.

  • View in gallery

    Predicted psychometric functions when the temporal bisection task is treated as a dual PI procedure and differences between response rates for two different target durations are computed as described in the main text. Top and bottom panels show that earlier and later start times for long reference duration lead to leftward and rightward shifts in the psychometric function, respectively. Start time modulation for the short target duration does not lead to any shifts in the psychometric function. Consequently, this view accounts for the results of Galtress and Kirkpatrick (2010). This figure is published in color in the online version.

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 27 27 17
Full Text Views 8 8 8
PDF Downloads 1 1 1
EPUB Downloads 0 0 0