Impact of Vestibular Lesions on Allocentric Navigation and Interval Timing: The Role of Self-Initiated Motion in Spatial-Temporal Integration

in Timing & Time Perception
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?


Bilateral intratympanic sodium arsenate injections (100 mg/ml in isotonic saline) in adult male Long Evans rats produced impairments in allocentric navigation using a 12-arm radial maze procedure as well as a motor test battery designed to evaluate vestibular function. In contrast, no impairments in the accuracy or precision of duration reproduction using 20-s and 80-s peak-interval procedures were observed when both target durations were associated with the same lever response, but distinguished by signal modality (e.g., light or sound). In contrast, an ordinal-reproduction procedure with 800, 3200, and 12,800 ms standards requiring the timing of self-initiated movements during the production phase revealed large impairments in the accuracy and precision of timing for vestibular lesioned rats. These impairments were greater on trials in which self-initiated body movements (e.g., holding down the response lever for a fixed duration) were required without the support of external stimuli signaling the onset and offset of the reproduced duration in contrast to trials in which such external support was provided. The conclusion is that space and time are separable entities and not simply the product of a generalized system, but they can be integrated into a common metric using gravity and self-initiated movement as a reference.



Aagten-MurphyD., IversenJ. R., WilliamsC. L., & MeckW. H. (2014). Novel inversions in auditory sequences provide evidence for spontaneous subtraction of time and number. Timing Time Percept., 2, 188209.

AgostinoP. V., ChengR. K., WilliamsC. L., WestA. E., & MeckW. H. (2013). Acquisition of response thresholds for timed performance is regulated by a calcium-responsive transcription factor, CaRF. Genes Brain Behav., 12, 633644.

AllmanM. J., & MeckW. H. (2012). Pathophysiological distortions in time perception and timed performance. Brain, 135, 656677.

AllmanM. J., TekiS.GriffithsT. D., & MeckW. H. (2014a). Properties of the internal clock: First- and second-order principles of subjective time. Annu. Rev. Psychol., 65, 743771.

AllmanM. J., YinB., & MeckW. H. (2014b). Time in the psychopathological mind. In ArstilaV. and LloydD. (Eds), Subjective time: Thephilosophy, psychology, and neuroscience of temporality (pp. 637654). Cambridge, MA: MIT Press.

AnnikoM., & WersallJ. (1975). Damage to the stria vascularis in the guinea pig by acute atoxyl intoxication. Acta Otolaryngol., 80, 167179.

AnnikoM., & WersallJ. (1977). Experimentally (atoxyl) induced ampullar degeneration and damage to the maculae utriculi. Acta Otolaryngol., 83, 429440.

BarmackN. H. (2003). Central vestibular system: Vestibular nuclei and posterior cerebellum. Brain Res. Bull., 60, 511541.

Barnett-CowanM. (2013). Vestibular perception is slow: A review. Multisensory Res., 26, 387403.

Barnett-CowanM., & HarrisL. R. (2009). Perceived timing of vestibular stimulation relative to touch light and sound. Exp. Brain Res., 198, 221231.

Barnett-CowanM., RaederS. M., & BülthoffH. H. (2012). Persistent perceptual delay for head movement onset relative to auditory stimuli of different durations and rise times. Exp. Brain Res., 200, 4150.

BarterJ. W., LiS., LuD., BartholomewR. A., RossiM. A., ShoemakerC. T., Salas-MezaD., GaidisE., & YinH. H. (2015a). Beyond reward prediction errors: The role of dopamine in movement kinematics. Front. Integr. Neurosci.9, 39. DOI: 10.3389/fnint.2015a.00039.

BarterJ. W., LiS., SukharnikovaT., RossiM. A., BartholomewR. A., & YinH. H. (2015b). Basal ganglia outputs map instantaneous position coordinates during behavior. J. Neurosci., 35, 27032716.

BartholomewA. J., MeckW. H., & CirulliE. T. (in press). Analysis of genetic and non-genetic factors influencing timing and time perception. PLoS One.

BensonA. J. (1982). The vestibular sensory system. In H. B. Barlow & J. D. Mollon (Eds), The senses (pp. 333–368). Cambridge, UK: Cambridge University Press.

BensonA. J. (1990). Sensory functions and limitations of the vestibular system. In WarrenR. & WertheimA. H. (Eds), Perception and control of self-motion (pp. 145170). Hillsdale, NJ, USA: Erlbaum.

BergouiganM., & VergerP. (1935). Les réactions labyrinthiques chez le chien après lésion d’un noyau caudé. C. R. Soc. Biol., 118, 15391541.

BerthozA., IsraëlI., Georges-FrançoisP., GrasseR., & TsuzukuT. (1995). Spatial memory of body linear displacement: What is being stored?Science, 269(5220), 9598.

BinettiN., SieglerI. A., BuetiD., & DoricchiF. (2010). Time in motion: Effects of whole-body rotatory accelerations on timekeeping processes. Neuropsychologia, 48, 18421852.

BrownM. F., & CookR. G. (1986). Within-trial dynamics of radial-arm maze performance in rats. Learn. Motiv., 17, 190205.

BuhusiC. V., & MeckW. H. (2005). What makes us tick? Functional and neural mechanisms of interval timing. Nat. Rev. Neurosci., 6, 755765.

BuhusiC. V., & MeckW. H. (2010). Timing behavior. In StolermanI. P. (Ed.), Encyclopedia of psychopharmacology (pp. 13191323). Heidelberg, Germany: Springer-Verlag.

BuhusiC. V., PereraD., & MeckW. H. (2005). Memory for timing visual and auditory signals in albino and pigmented rats. J. Exp. Psychol. Anim. Behav. Process., 31, 1830.

BuhusiC. V., AzizD., WinslowD., CarterR. E., SwearingenJ. E., & BuhusiM. C. (2009). Interval timing accuracy and scalar timing in C57BL/6 mice. Behav. Neurosci., 123, 11021113.

BuhusiM., ScripaI., WilliamsC. L., & BuhusiC. V. (2013). Impaired interval timing and spatial-temporal integration in mice deficient in CHL1, a gene associated with schizophrenia. Timing Time Percept., 1, 2138.

BuresJ., FentonA. A., KaminskyYu., RossierJ., SacchettiB., & ZinyukL. (1997). Dissociation of exteroceptive and idiothetic orientation cues: Effect on hippocampal place cells and place navigation. Phil. Trans. R. Soc. Lond. B, 352, 15151524.

CapelliA., DeborneR., & IstaelI. (2007). Temporal interval production during passive self-motion in darkness. Curr. Psychol. Let., 22:2.

ChaisanguanthumK. S., JoshuaM., MedinaJ. F., BialekW., & LisbergerS. G. (2014). The neural code for motor control in the cerebellum and oculomotor brainstem. eNeuro, 1. DOI: e004–14.2014 1–17.

ChengK. (1986). A purely geometric module in the rat’s spatial representation. Cognition, 23, 149178.

ChengK. (1992). Three psychophysical principles in the processing of information. In HongW. K. and FettermanJ. G. (Eds), Cognitive aspects of stimulus control. (pp. 6988). Hillsdale, NJ, USA: Erlbaum.

ChengR. K., & MeckW. H. (2007). Prenatal choline supplementation increases sensitivity to time by reducing non-scalar sources of variance in adult temporal processing. Brain Res., 1186, 242254.

ChengR. K., MacDonaldC. J., & MeckW. H. (2006). Differential effects of cocaine and ketamine on time estimation: Implications for neurobiological models of interval timing. Pharmacol. Biochem. Behav., 85, 114122.

ChengR. K., MacDonaldC. J., WilliamsC. L., & MeckW. H. (2008). Prenatal choline supplementation alters the timing, emotion, and memory performance (TEMP) of adult male and female rats as indexed by differential reinforcement of low-rate schedule behavior. Learn. Mem., 15, 153162.

ChengR. K., DykeA. G., McConnellM. W., & MeckW. H. (2011). Categorical scaling of duration as a function of temporal context in aged rats. Brain Res., 1381, 175186.

ChurchR. M., MeckW. H., & GibbonJ. (1994). Application of scalar timing theory to individual trials. J. Exp. Psychol. Anim. Behav. Process., 20, 135155.

CohenH., CohenB., RaphanT., & WaespeW. (1992). Habituation and adaptation of the vestibuloocular reflex: A model of differential control by the vestibulocerebellum. Exp. Brain Res., 90, 526538.

ColagiorgioP., BertoliniG., BockischC. J., StraumannD., & RamatS. (2015). Multiple timescales in the adaptation of the rotational VOR. J. Neurophysiol., 113, 31303142.

CookR. G., BrownM. F., & RileyD. A. (1985). Flexible memory processing by rats: Use of prospective and retrospective information in the radial maze. J. Exp. Psychol. Anim. Behav. Process., 11, 453469.

CordesS., & MeckW. H. (2014). Ordinal judgments in the rat: An understanding of ‘longer’ and ‘shorter’ for suprasecond, but not subsecond, durations. J. Exp. Psychol. Gen.143, 710720.

CordesS., WilliamsC. L., & MeckW. H. (2007). Common representations of abstract quantities. Curr. Direct. Psychol. Sci., 16, 156161.

CoullJ. T., ChengR. K., & MeckW. H. (2011). Neuroanatomical and neurochemical substrates of timing. Neuropsychopharmacology, 36, 325.

CrowneD. P., TokrudP. A., & BrownP. (1991). The relation of rotation to egocentric and allocentric spatial learning in the rat. Soc. Neurosci. Abstr., 17, 483.

CullenK. E. (2012). The vestibular system: Multimodal integration and encoding of self-motion for motor control. Trends Neurosci., 35, 185196.

DaleR. H. (1986). Spatial and temporal response patterns on the eight-arm radial maze. Physiol. Behav., 36, 787790.

DaleR. H., & InnisN. K. (1986). Interactions between response stereotypy and memory strategies on the eight-arm radial maze. Behav. Brain Res., 19, 1725.

DallalN. L. (1997). Vestibular inputs to spatial navigation: Implications for dead-reckoning theories of cognitive mapping. Unpublished doctoral thesis, Columbia University, New York, NY, USA.

DallalN. L., & MeckW. H. (1990). Hierarchical structures: Chunking by food type facilitates spatial memory. J. Exp. Psychol. Anim. Behav. Process., 16, 6984.

DallalN. L., & MeckW. H. (1992). Dead reckoning and the cognitive map: Vestibular inputs to spatial navigation. Bull. Psychon. Soc., 30, 486.

DallalN. L., & MeckW. H. (1993). Depletion of dopamine in the caudate nucleus but not destruction of vestibular inputs impairs short-interval timing in rats. Soc. Neurosci. Abst., 19, 1583.

DallalN., LiW., & MatinL. (1993). Visually perceived eye level and straight ahead: Influences from visual field pitch, visual field slant, observer orientation, and gravity. East. Psychol. Assoc. Abstr., 64, 42.

DarlingtonC. L., & SmithP. F. (1991). Behavioural recovery from peripheral vestibular lesions as a model of recovery from brain damage. NZ J. Psychol., 20, 2532.

DeCoteau, W. E, & KesnerR. P. (2000). A double dissociation between the rat hippocampus and medial caudoputamen in processing two forms of knowledge. Behav. Neurosci., 114, 1096108.

EaglemanD. M. (2004). Time perception is distorted during slow motion sequences in movies. J. Vis., 4, 491.

EaglemanD. M. (2008). Human time perception and its illusions, Curr. Opin. Neurobiol., 18, 131136.

EaglemanD. M., TseP. U., BuonomanoD. V., JanssenP., NobreA. C. & HolcombeA. O. (2005). Time and the brain: How subjective time relates to neural time. J. Neurosci., 25, 1036910371.

EbnerF. F. (1967). Medical geniculate nucleus projections to telencephalon in the opossum. Anat. Rec., 157, 238239.

FajnerovaI., KenneyJ., LobellovaV., OkrouhlicovaS., StuchlikA., & KlementD. (2014). Can rats solve the active place avoidance task without the room-bound cues?Behav. Brain Res., 267, 126132.

FanD., RossiM. A., & YinH. H. (2012). Mechanisms of action selection and timing in substantia nigra neurons. J. Neurosci., 32, 55345548.

FrankenhaeuserM. (1960). Subjective time as affected by gravitational stress. Scand. J. Psychol., 1, 16.

GallistelC. R. (1989). Animal cognition: The representation of space, time, and number. Annu. Rev. Psychol., 40, 155189.

GallistelC. R. (1990). The organization of learning. Cambridge, MA, USA: MAL Bradford Books/MIT Press.

Georges-FrançoisP., GrassoR., BerthozA., & IsraëlI. (1995). Self-controlled reproduction of passive linear displacement. In MergnerT. & HlavacksF. (Eds), Multisensory control of posture (pp. 199206). New York, NY, USA: Springer.

GibbonJ., ChurchR. M., & MeckW. H. (1984). Scalar timing in memory. Ann. N. Y. Acad. Sci.423, 5277.

GibbonJ., MalapaniC., DaleC. L., & GallistelC. R. (1997). Toward a neurobiology of temporal cognition: Advances and challenges. Curr. Opin. Neurobiol.7, 170184.

GlasauerS., SchneiderE., GrassoR., & IvanenkoY. P. (2007). Space-time relativity in self-motion reproduction. J. Neurophysiol., 97, 451461.

GrobetyM. C., & SchenkF. (1992). The influence of spatial irregularity upon radial-maze performance in the rat. Anim. Learn. Behav., 20, 393400.

GuB. M. (2014). Oscillatory mechanisms supporting interval timing in cortical-striatal circuits. Unpublished doctoral thesis, Duke University, Durham, North Carolina.

GuB-M., van RijnH., & MeckW. H. (2015a). Oscillatory multiplexing of neural population codes for interval timing and working memory. Neurosci. Biobehav. Rev., 48, 160185.

GuB-M., Jurkowski, A. J., Lake, J. I., MalapaniC., & Meck, W. H. (2015b). Bayesian models of interval timing and distortions in temporal memory as a function of Parkinson’s disease and dopamine-related error processing. In VatakisA. and AllmanM.J. (Eds), Time distortions in mind: Temporal processing in clinical populations (pp. 284329). Boston, MA, USA: Brill Academic Publishers.

HalmagyiG. M., CurthoysI. S., & GibsonW. P. (1988). Vestibular neurectomy and the management of vertigo. Curr. Opin. Neurol. Neurosurg., 1, 879889.

HarringtonD. L., CastilloG. N., FongC. H., & ReedJ. D. (2011). Neural underpinnings of distortions in the experience of time across senses. Front. Integr. Neurosci., 5, 32. DOI: 10.3389/fnint.2011.00032.

HarringtonD. L., CastilloG. N., ReedJ. D., SongD. D., LitvanI., & LeeR. R. (2014). Dissociation of neural mechanisms for intersensory timing deficits in Parkinson’s disease. Timing Time Percept., 2, 145168.

HintonS. C., & MeckW. H. (1997a). How time flies: Functional and neural mechanisms of interval timing. Adv. Psychol., 120, 409457.

HintonS. C., & MeckW. H. (1997b). The “internal clocks” of circadian and interval timing. Endeavour, 21, 8287.

HitierM., BesbardS., & SmithP. F. (2014). Vestibular pathways involved in cognition. Front. Integr. Neurosci., 8, 59. DOI: 10.3389/fnint.2014.00059.

HoffstaedterF., GrefkesC., ZillesK., & EIckhoffS. B. (2012). The “what” and “when” of self-initiated movements. Cereb. Cortex, 23, 520530.

HonigW. K. (1981). Working memory and the temporal map. In SpearN. E., and MillerR. R. (Eds), Information processing in animals: Memory mechanisms (pp. 167197). Hillsdale, NJ, USA: Erlbaum.

HonzikC. H. (1936). The sensory basis of maze learning in rats. Comp. Psychol. Monogr., 13(4).

HornK. M., DeWittJ. R., & NielsonH. C. (1981). Behavioral assessment of sodium arsanilate induced vestibular dysfunction in rats. Physiol. Psychol., 9, 371378.

HowardM. W., MacDonaldC. J., TiganjZ., ShankarK. H., DuQ., HasselmoM. E., & EichenbaumH. (2014). A unified mathematical framework for coding time, space, and sequences in the hippocampal region. J. Neurosci., 34, 46924707.

HuntM. A., MillerS. W., NielsonH. C., & HornK. M. (1987). Intratympanic injection of sodium arsanilate (atoxyl) results in postural changes consistent with the changes described for labyrinthectomized rats. Behav. Neurosci., 101, 427428.

IsraëlI., CapelliA., SabléD., LaurentC., LecoqC., & BredinJ. (2004). Multifactorial interactions involved in linear self-trasport distance estimate: A place for time. Int. J. Psychophysiol., 53, 2128.

IvryR. (1996). The representation of temporal information in perception and motor control. Curr. Opin. Neurobiol., 6, 851857.

IvryR. B., & KeeleS. W. (1989). Timing functions of the cerebellum. J. Cogn. Neurosci., 1, 136152.

IvryR. B., & RichardsonT. C. (2002). Temporal control and coordination: The multiple timer model. Brain Cogn., 48, 117132.

IvryR. B., & SpencerR. M. C. (2004). The neural representation of time. Curr. Opin. Neurobiol., 14, 225232.

JacobP.-Y., PoucetB., LibergeM., SaveE., & SargoliniF. (2014). Vestibular control of entorhinal cortex in spatial navigation. Front. Integr. Neurosci., 8, 38. DOI: 10.3389/fnint.2014.00038.

JahanshahiM., JenkinsI. H., BrownR. G., MarsdenC. D., PassinghamR. E., & BrooksD. J. (1995). Self-initiated versus externally triggered movements. I. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson’s disease subjects. Brain, 118, 913933.

JonesC. R. G., & JahanshahiM. (2014). Contributions of the basal ganglia to temporal processing; Evidence from Parkinson’s disease. Timing Time Percept., 2, 87127.

JonesC. R. G., & JahanshahiM. (2015). Striatal and frontal pathology: Parkinson’s disease and patients with lesions of the basal ganglia and frontal cortex. In VatakisA. & AllmanM.J. (Eds), Time distortions in mind: Temporal processing in clinical populations (pp. 250280). Boston, MA, USA: Brill Academic Publishers.

KelleyJ. P. (1991). Vestibular system. In KandelE. R. & SchwartzJ. H. (Eds), Principles of neural science, 3rd ed. (pp. 591595 ). New York, NY, USA: Elsevier, North-Holland.

KimN., BarterJ. W., SukharnikovaT., & YinH. H. (2014). Striatal firing rate reflects head movement velocity. Eur. J. Neurosci., 40, 34813490.

LacquanitiF., BiscoG., GravanoS., IndovinaI., La ScaleiaB., MaffeiV., & ZagoM. (2015). Gravity in the brain as a reference for space and time perception. Multisens. Res., 28, 397426.

LakeJ. I. & MeckW. H. (2013). Differential effects of amphetamine and haloperidol on temporal reproduction: Dopaminergic regulation of attention and clock speed. Neuropsychologia, 51, 284292.

LakeJ. I., LaBarK. S. & MeckW. H. (2014). Hear it playing low and slow: How pitch level differentially influences time perception. Acta Psychologica, 149, 169177.

LaurensJ., MengH. & AngelakiD. E. (2013). Computation of linear acceleration through an internal model in the macaque cerebellum, Nat. Neurosci., 16, 17011708.

LewisP. A. & MeckW. H. (2012). Time and the sleeping brain. Psychologist, 25, 594597.

LiW., DallalN., & MatinL. (2001). Influences of visual pitch and visual yaw on visually perceived ege level (VPEL) and straight ahead (VPSA) for erect and rolled-to-horizontal observers. Vis. Res., 41, 28732894.

LockeS. (1970). Subcortical projection of the magnocellular medial geniculate body of monkey. J. Comp. Neurol., 138, 321328.

LoomisJ. M., KlatzkyR. L., & GolledgeR. G. (2001). Navigating without vision: Basic and applied research. Opto. Vis. Sci., 78, 282289.

LopezC. (2015). Making sense of the body: The role of vestibular signals. Multisens. Res., 28, 525557.

LuskN. A., PetterE. A., MacDonaldC. J., & MeckW. H. (in press). Cerebellar, hippocampal, and striatal time cells. Curr. Opin. Behav. Sci.

MacDonaldC. J. (2014). Prospective and retrospective duration memory in the hippocampus: Is time in the foreground or background?Phil. Trans. R. Soc. B., 369, 20120463.

MacDonaldC. J., & MeckW. H. (2004). Systems-level integration of interval timing and reaction time. Neurosci. Biobehav. Rev., 28, 747769.

MacDonaldC. J., & MeckW. H. (2006). Interaction of raclopride and preparatory-interval effects on simple reaction-time performance. Behav. Brain Res.175, 6274.

MacDonaldC. J., ChengR. K., WilliamsC. L., & MeckW. H. (2007). Combined organizational and activational effects of short and long photoperiods on spatial and temporal memory in rats. Behav. Process., 74, 226233.

MacDonaldC. J., ChengR. K., & MeckW. H. (2012). Acquisition of “Start” and “Stop” response thresholds in peak-interval timing is differentially sensitive to protein synthesis inhibition in the dorsal and ventral striatum. Front. Integr. Neurosci., 6,10. DOI: 10.3389/fnint.2012.00010 .

MacDonaldC. J., FortinN. J., SakataS., & MeckW. H. (2014). Retrospective and prospective views on the role of the hippocampus in interval timing and memory for elapsed time. Timing Time Percept., 2, 5161.

MalapaniC., RakitinB., LevyR., MeckW. H., DeweerB., DuboisB., & GibbonJ. (1998). Coupled temporal memories in Parkinson’s disease: A dopamine-related dysfunction. J. Cogn. Neurosci., 10, 316331.

MangelsJ. A., IvryR. B., & ShimizuN. (1998). Dissociable contributions of the frontal and neocerebellar cortex to time perception. Cogn. Brain Res., 7, 1539.

MartinJ. P. (1967). The basal ganglia and posture. Philadelphia, PA: Lippincott.

MastF. W., & EllisA. W. (2015). Internal models, vestibular cognition, and mental imagery: Conceptual considerations. Multisensory Res., 28 (5–6), 443460.

MatellM. S., & MeckW. H. (2000). Neuropsychological mechanisms of interval timing behaviour. BioEssays, 22, 94103.

MatellM. S., & MeckW. H. (2004). Cortico-striatal circuits and interval timing: Coincidence-detection of oscillatory processes. Cogn. Brain Res., 21, 139170.

MatellM. S., MeckW. H., & NicolelisM. A. L. (2003). Interval timing and the encoding of signal duration by ensembles of cortical and striatal neurons. Behav. Neurosci., 117, 760773.

MatellM. S., BatesonM., & MeckW. H. (2006). Single-trials analyses demonstrate that increases in clock speed contribute to the methamphetamine-induced horizontal shifts in peak-interval timing functions. Psychopharmacology, 188, 201212.

MatthewsW. J., & MeckW. H. (2014). Time perception: The bad news and the good. WIREs Cogn. Sci., 5, 429446.

MatthewsB. L., RyuJ. H., & BockaneckC. (1989). Vestibular contribution to spatial orientation. Evidence of vestibular navigation in an animal model. Acta Otolaryngol. Suppl., 468, 149154.

MatthewsW. J., TerhuneD. B., van RijnH., EaglemanD. M., SommerM. A., & MeckW. H. (2014). Subjective duration as a signature of coding efficiency: Emerging links among stimulus repetition, prediction coding, and cortical GABA levels. Timing Time Percept. Rev., 1,5. DOI: 10.1163/24054496_001_01_s005 .

McNaughtonB. L., ChenL. L., & MarkusE. J. (1991). ‘Dead reckoning,’ landmark learning, and the sense of direction: A neurophysiological hypothesis. J. Cogn. Neurosci., 3, 190202.

MeckW. H. (1983). Selective adjustment of the speed of internal clock and memory processes. J. Exp. Psychol. Anim. Behav. Process., 9, 171201.

MeckW. H. (1988). Hippocampal function is required for feedback control of an internal clock’s criterion. Behav. Neurosci., 102, 5460.

MeckW. H. (1996). Neuropharmacology of timing and time perception. Cogn. Brain Res., 3, 227242.

MeckW. H. (2001). Interval timing and genomics: What makes mutant mice tick?Int. J. Comp. Psychol., 14, 211231.

MeckW. H. (2002). Choline uptake in the frontal cortex is proportional to the absolute error of a temporal memory translation constant in mature and aged rats. Learn. Motiv., 33, 88104.

MeckW. H. (2005). Neuropsychology of timing and time perception. Brain Cogn., 58, 18.

MeckW. H. (2006a). Frontal cortex lesions eliminate the clock speed effect of dopaminergic drugs on interval timing. Brain Res., 1108, 157167.

MeckW. H. (2006b). Neuroanatomical localization of an internal clock: A functional link between mesolimbic, nigrostriatal, and mesocortical dopaminergic systems. Brain Res., 1109, 93107.

MeckW. H. (2006c). Temporal memory in mature and aged rats is sensitive to choline acetyltransferase inhibition. Brain Res., 1108, 168175.

MeckW. H., & AngellK. E. (1992). Repeated administration of pyrithiamine leads to a proportional increase in the remembered durations of events. Psychobiology, 20, 3946.

MeckW. H., & BensonA. M. (2002). Dissecting the brain’s internal clock: How frontal-striatal circuitry keeps time and shifts attention. Brain Cogn., 48, 195211.

MeckW. H., & ChurchR. M. (1987). Cholinergic modulation of the content of temporal memory. Behav. Neurosci., 101, 457464.

MeckW. H., & IvryR. B. (in press). Interval timing and skill learning: The multisensory representation of time and action. Curr. Opin. Behav. Sci.,.

MeckW. H., ChurchR. M., & OltonD. S. (1984). Hippocampus, time, and memory. Behav. Neurosci., 98, 322.

MeckW. H., ChurchR. M., & WenkG. L. (1986). Arginine vasopressin inoculates against age-related increases in sodium-dependent high affinity choline uptake and discrepancies in the content of temporal memory. Eur. J. Pharmacol., 130, 327331.

MeckW. H., ChurchR. M., WenkG. L., & OltonD. S. (1987). Nucleus basalis magnocellularis and medial septal area lesions differentially impair temporal memory. J. Neurosci., 7, 35053511.

MeckW. H., SmithR. A., & WilliamsC. L. (1988). Pre- and postnatal choline supplementation produces long-term facilitation of spatial memory. Dev. Psychobiol., 21, 339353.

MeckW. H., SmithR. A., & WilliamsC. L. (1989). Organizational changes in cholinergic activity and enhanced visuospatial memory as a function of choline administered prenatally or postnatally or both. Behav. Neurosci., 103, 12341241.

MeckW. H., PenneyT. B., & PouthasV. (2008). Cortico-striatal representation of time in animals and humans. Curr. Opin. Neurobiol., 18, 145152.

MeckW. H., ChengR. K., MacDonaldC. J., GainetdinovR. R., CaronM. G., & ÇevikM. Ö. (2012). Gene-dose dependent effects of methamphetamine on interval timing in dopamine-transporter knockout mice. Neuropharmacology, 62, 12211229.

MeckW. H., ChurchR. M., & MatellM. S. (2013). Hippocampus, time, and memory — A retrospective analysis. Behav. Neurosci., 127, 642654.

MelgireM., RagotR., SamsonS., PenneyT. B., MeckW. H., & PouthasV. (2005). Auditory/visual duration bisection in patients with left or right medial-temporal lobe resection. Brain Cogn., 58, 119124.

MelloG. B. M., SoaresS., & PatonJ. J. (2015). A scalable population code for time in the striatum. Curr. Biol., 25, 11131122.

MerchantH., ZarcoW., & PradoL. (2008). Do we have a common mechanism for measuring time in the hundreds of millisecond range? Evidence from multiple-interval timing tasks. J. Neurophys., 99, 939949.

MerchantH., HarringtonD. L., & MeckW. H. (2013). Neural basis of the perception and estimation of time. Annu. Rev. Neurosci., 36, 313336.

MettlerF. A., & MettlerC. C. (1940). Labyrinthine disregards after removal of the caudate. Proc. Soc. Exp. Biol. Med., 45, 473475.

MittelstaedtM. L. & MittelstaedtH. (2001). Idiothetic navigation in humans: Estimation of path length. Exp. Brain Res., 139, 318332.

MuskensL. J. (1922). The central connections of the vestibular nuclei with the corpus striatum and thei significance for ocular movements and for locomotion. Brain, 45, 454478.

NekovarovaT., NedvidekJ., & BuresJ. (2006). Spatial choices of rats based on abstract visual information: Pattern- or configuration-discrimination?Behav. Brain Res., 172, 264271.

NekovarovaT., NedvidekJ., KlementD., & BuresJ. (2009). Spatial decisions and cognitive strategies of monkeys and humans based on abstract spatial stimuli in rotation test. Proc. Natl Acad. Sci. USA, 106, 1547815482.

NichelliP., AlwaysD., & GrafmanJ. (1996). Perceptual timing in cerebellar degeneration. Neuropsychologia, 34, 863871.

NielsonH. C. (1991). Personal communication (February 26, 1991).

OltonD. S. (1979). Mazes, maps, and memory. Am. Psychol.34, 583596.

OltonD. S., & SamuelsonR. J. (1976). Remembrance of places passed: Spatial memory in rats. J. Exp. Psychol. Anim. Behav. Process., 2, 97116.

OltonD. S., BeckerJ. T., & HandelmannG. E. (1979). A re-examination of the role of hippocampus in working memory. Behav. Brain Sci., 2(3), 352365.

OltonD. S., WenkG. L., ChurchR. M., & MeckW. H. (1988). Attention and the frontal cortex as examined by simultaneous temporal processing. Neuropsychologia, 26, 307318.

O’KeefeJ., &DostrovskyJ. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res., 34, 171175.

O’KeefeJ., & NadelJ. (1978). The hippocampus as a cognitive map. Clarendon Press: Oxford, UK.

OssenkoppK. P., & HargreavesE. L. (1993). Spatial learning in an enclosed eight-armed radial maze in rats with sodium arsanilate-induced labyrinthectomies. Behav. Neural Biol., 59, 253257.

OssenkoppK. P., PrkacinA., & HargreavesE. L. (1990). Sodium arsailate-induced vestibular dysfunction in rats: Effects on open-field behavior and spontaneous activity in the automated digiscan monitoring system. Pharmacol. Biochem. Behav., 36, 875881.

OssenkoppK. P., EckelL. A., HargreavesE. L., & KavaliersM. (1992). Sodium arsanilate-induced vestibular dysfunction in meadow voles (Microtus pennsylvanicus): Effects on posture, spontaneous locomotor activity and swimming behavior. Behav. Brain Res., 47, 1322.

PastalkovaE., ItskovV., AmarasinghamA., & BuzsákiG. (2008). Internally generated cell assembly sequences in the rat hippocampus. Science, 321, 13221327.

PauleM. G., MeckW. H., McMillanD. E., McClureG. Y. H., BatesonM., PopkeE. J., ChelonisJ. J., & HintonS. C. (1999). The use of timing behaviors in animals and humans to detect drug and/or toxicant effects. Neurotox. Teratol., 21, 491502.

PenneyT. B., HolderM. D., & MeckW. H. (1996). Clonidine-induced antagonism of norepinephrine modulates the attentional processes involved in peak-interval timing. Exp. Clin. Psychopharmcol., 4, 8292.

PerrettS. P., RuizB. P., & MaukM. D. (1993). Cerebellar cortex lesions disrupt learning-dependent timing of conditioned eyelid responses. J. Neurosci., 13, 17081718.

PetrasekT., ProkopovaI., BahnikS., SchonigK., BergerS., ValesK., TewsB., SchwabM. E., BartschD., & StuchlikA. (2014). Nogo-A downregulation impairs place avoidance in the Carousel maze but not spatial memory in the Morris water maze. Neurobiol. Learn. Mem., 107, 4249.

PetterE. A., LuskN. A., HullC., HesslowG., & MeckW. H. (in press). Interactive roles of the cerebellum and striatum in sub-second and supra-second timing: Support for an initiation, continuation, adjustment, and termination (ICAT) model of temporal integration. Curr. Opin. Behav. Sci.

PleilK. E., CordesS., MeckW. H., & WilliamsC. L. (2011). Rapid and acute effects of estrogen on time perception in male and female rats. Integr. Neurosci., 5, 63. DOI: 10.3389/fnint.2011.00063 .

PlumbD. C. (1991). Veterinary drug handbook. White Bear Lake, MN, USA: Pharmavet.

PompeianoO. (1974). Cerebello-vestibular interrelations. In KornhuberH. H. (Ed.), Handbook of Sensory Physiology, Vol. 6/1 (pp. 417476). Berlin, Germany: Springer-Verlag.

PorterJ. D. (1991). Personal communication (November 11, 1991).

PorterJ. D., PellisS. M., & MeyerM. E. (1990). An open-field activity analysis of labyrinthectomized rats. Physiol. Behav., 48, 2730.

PotegalM. (1969). Role of the caudate nucleus in spatial orientation of rats. J. Comp. Physiol. Psychol., 69, 756764.

PotegalM. (1982). Vestibular and neostriatal contributions to spatial orientation. In PotegalM. (Ed.), Spatial abilities: Development and physiological foundations (pp. 361387). New York, NY, USA: Academic Press.

PotegalM., CopackP., deJongJ. M., KrauthamerG., & GilmanS. (1971). Vestibular input to the caudate nucleus. Exp. Neurol., 32, 448465.

RakitinB. C., DallalN. L., & MeckW. H. (1992). Spatial memory structure and capacity: Influences on problem-solving and memory-coding strategies. In HonigW. K. & FettermanJ. G. (Eds.), Cognitive aspects of stimulus control (pp. 155183). Hillsdale, NJ, USA: Erlbaum.

RanczE. A., MoyaJ., DrawitschF., BrichtaA. M., CanalsS., & MargrieT. W. (2015). Widespread vestibular activation of the rodent cortex. J. Neurosci., 35, 59265934.

RaphanT., & CohenB. (1985). Velocity storage and the ocular response to multidimensional vestibular stimuli. Rev. Oculomotor Res., 1, 123143.

RaphanT., & SturmD. (1991). Modeling the spatiotemporal organization of velocity storage in the vestibuloocular reflex by optokinetic studies. J. Neurophys., 66, 14101421.

RaphanT., DaiM., & CohenB. (1992). Spatial orientation of the vestibular system. Ann. N. Y. Acad. Sci., 656, 140157.

RiccioD. C., IgarashiM., & EskinA. (1967). Modification of vestibular sensitivity in the rat. Ann. Otol. Rhin. Laryng., 76, 179188.

RubelE. W., DewL. A., & RobersonD. W. (1995). Mammalian vestibular hair cell regeneration. Science, 267, 701707.

RussellN., HoriiA., SmithP. F., DarlingtonC. L. & BilkeyD. (2003a). Effects of bilateral vestibular deafferentation on radial arm maze performance, J. Vestib. Res., 13, 916.

RussellN., HoriiA., SmithP. F., DarlingtonC. L. & BilkeyD. (2003b). The long-term effects of permanent vestibular lesions on hippocampal spatial firing, J. Neurosci., 23, 64906498.

RussellN. A., HoriiA., SmithP. F., DarlingtonC. L., & BilkeyD. K. (2006). Lesions of the vestibular system disrupt hippocampal theta rhythm in the rat. J. Neurophysiol., 96, 414.

SchurgerA., SittJ. D., & DehaeneS. (2012). An accumulator model for spontaneous neural activity prior to self-initied movement. Proc. Natl Acad. Sci. U.S.A., 109, E2904E2913.

SemjenA., LeoneG., & LipshitsM. (1998). Temporal control and motor control: Two functional modules which may be influenced differently under microgravity. Hum. Mov. Sci., 17, 7793.

ShiZ., ChurchR. M., & MeckW. H. (2013). Bayesian optimization of time perception. Trends Cogn. Sci., 17, 556564.

SmithP. F., & ZhengY. (2013). From ear to uncertainty: Vestibular contributions to cognitive function. Front. Integr. Neurosci., 7, 84. DOI: 10.3389/fnint.2013.00084 .

SmithP. F., BrandtT., StruppM., DarlingtonC. L., & ZhengY. (2009). Balance before reason in rats and humans. Ann. N.Y. Acad. Sci., 1164, 127133.

SmithP. F., HoriiA., RussellN., BilkeyD. K., ZhengY., LiuP., KerrD. S., & DarlingtonC. L. (2005). The effects of vestibular lesions on hippocampal function in rats. Prog. Neurobiol., 75, 391405.

SmithP. F., DarlingtonC. L., & ZhengY. (2010). Move it or lose it — Is stimulation of the vestibular system necessary for normal spatial memory?Hippocampus, 20, 3643.

SmithP. F., DarlingtonC. L., & ZhengY. (2015). The effects of complete vestibular deafferentation on spatial memory and the hippocampus in the rat: The Dunedin experience. Multisens. Res., 28, 461485.

SoykaF.BülthoffH. H., & Barnett-CowanM. (2013). Temporal processing of self-motion: Modeling reaction times for rotations and translations. Exp. Brain Res., 288, 5162.

SpencerR. M. C. (2015). Timing in the cerebellum and cerebellar disorders. In VatakisA. and AllmanM.J. (Eds), Time distortions in mind: Temporal processing in clinical populations (pp. 226249). Boston, MA, USA: Brill Academic Publishers.

StackmanR. W., & HerbertA. M. (2002). Rats with lesions of the vestibular system require a visual landmark for spatial navigation. Behav. Brain Res., 128, 2740.

StackmanR. W., & TaubeJ. S. (1997). Firing properties of head direction cells in the rat anterior thalamic nucleus: Dependence on vestibular input. J. Neurosci., 17, 43494358.

StackmanR. W., ClarkA. S., & TaubeJ. S. (2002). Hippocampal spatial representations require vestibular input. Hippocampus, 12, 291303.

StilesL., & SmithP. F. (2015). The vestibular-basal ganglia connection: Balancing motor control. Brain Res., 1597, 180188.

StuchlikA., FentonA. A., & BuresJ. (2001). Substratal idiothetic navigation of rats is impaired by removal or devaluation of extramaze and intramaze cues. Proc. Natl Acad. Sci. U.S.A., 98, 35373542.

StuchlikA., PetrasekT., HatalovaH., RambousekL., NekovarovaT., & ValesK. (2012). Behavioral tests for evaluation of information processing and cognitive deficits in rodent animal models of neuropsychiatric disorders. In BurneT. H. J. (Ed.), Schizophrenia in the 21st century (pp. 153–180). Rijeka, Croatia: InTech. Available from:

SvobodaJ., TelenskyP., BlahnaK., VodickaM., and StuchlikA. (2015). The role of rat posterior cortex in coordinating spatial representations during place avoidance in dissociated reference frames on a continuously rotating arena (Carousel). Behav. Brain Res., 292, 19.

TaubeJ. S., MullerR. U., & RanckJ. B. (1990a). Head direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J. Neurosci., 10, 420435.

TaubeJ. S., MullerR. U., & RanckJ. B. (1990b). Head direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations. J. Neurosci., 10, 436447.

TekiS., GrubeM., & GriffithsT. D. (2012). A unified model of time perception accounts for duration-based and beat-based timing mechanisms. Front. Integr. Neurosci., 5, 90. DOI: 10.3389/fnint.2011.00090 .

ToddN. P. M., & LeeC. S. (2015). Source analysis of electrophysiological correlates of beat induction as sensory-guided action. Front. Psychol., 6:1178. DOI: 10.3389/fpsyg.2015.01178 .

VignauxG., ChabbertC., Gaboyard-NiayS., TravoC., MachadoM. L., DeniseP., ComozF., HitierM., LandemoreG., PhiloxeneB., & BesnardS. (2012). Evaluation of the chemical model of vestibular lesions induced by arsanilate in rats. Tox. Applied Pharm., 258, 6171.

VolkeningK., BergmannJ., KellerI., WuehrM., MüllerF., & JahnK. (2014). Verticality perception during and after galvanic vestibular stimulation. Neurosci. Lett., 581, 7579.

WallaceD. G., HinesD. J., PellisS. M., & WhishawI. Q. (2002). Vestibular information is required for dead reckoning in the rat. J. Neurosci., 22, 1000910017.

WalshV. (2003). A theory of magnitude: common cortical metrics of time, space and quantity. Trends Cogn. Sci., 7, 483488.

WepsicJ. G. (1966). Multimodal sensory activation of cells in the magnocellular medial geniculate nucleus. Exp. Neurol., 15, 299318.

WilliamsC. L., BarnettA. M., & MeckW. H. (1990). Organizational effects of early gonadal secretions on sexual differentiation in spatial memory. Behav. Neurosci., 104, 8497.

WingA. M., & KristoffersonA. B. (1973). Response delays and the timing of discrete motor responses. Percept. Psychophysics, 14, 512.

YinH. H. (2014). Action, time and the basal ganglia. Phil. Trans. R. Soc. Lond. B, 369, 20120473.

YinB., & MeckW. H. (2014). Comparison of interval timing behaviour in mice following dorsal or ventral hippocampal lesions with mice having δ opioid receptor gene deletion. Phil. Trans. R. Soc. Lond. B, 369, 20120466.

YinB., & TrogerA. B. (2011). Exploring the 4th dimension: Hippocampus, time, and memory revisted. Front. Integr. Neurosci., 5, 36. DOI: 10.3389/fnint.2011.00036 .

YinB., LuskN. A., ChengR. K., & MeckW. H. (in press). Interval-timing protocols and their relevancy to the study of temporal cognition and neurobehavioral genetics. In TucciV. (Ed.), Neuro-phenome: Cutting-edge approaches and technologies in neurobehavioral genetics. Hoboken, NJ, USA: Wiley-Blackwell.

YoderR. M., GoebelE. A., KöppenJ. R., BlankenshipP. A., BlackwellA. A., & WallaceD. G. (2015). Otolithic information is required for homing in the mouse. Hippocampus, 25, 890899.

ZagoM., BoscoG., MaffeiV., IosaM., IvanenkoY. P. & LacquanitiF. (2004). Internal models of target motion: expected dynamics overrides measured kinematics in timing manual interceptions, J. Neurophysiol., 91, 16201634.

ZagoM., McIntyreJ., SenotP. and LacquanitiF. (2009). Visuo-motor coordination and internal models for object interception, Exp. Brain Res., 192, 571604.

ZagoM., CarrozzoM., MoscatelliA. and LacquanitiF. (2011). Time, observation, movement, Cogn. Crit., 4, 6186.

ZoladekL., & RobertsW. A. (1978). The sensory basis of spatial memory in the rat. Anim. Learn. Behav., 6, 7781.


  • Mean number of choices required to find the eight baited locations in the 12-arm radial maze as a function of blocks of three daily sessions. The choices to criterion measure is composed of both working memory errors (e.g., repeating an arm) and reference memory errors (e.g., entering an arm that is never baited in the 8 S+, 4 S− baiting pattern).

    View in gallery
  • Mean ± SE choices to criterion (total choices required to find the eight baited S+ arms), working memory errors (arm repeats), and reference memory errors (entering an unbaited S− arm) during the last three blocks of post-surgical training (nine sessions) on the radial-arm maze (RAM) procedure.

    View in gallery
  • Mean number of responses per minute plotted as a function of time since the onset of the signal (light or sound) for vestibular lesioned and control rats trained with 20-s and 80-s target durations in the peak-interval (PI) procedure. These post-surgical data are taken from the last ten sessions of PI training.

    View in gallery
  • Percent maximum response rate plotted as a function of time since the onset of the signal (light or sound) for vestibular lesioned and control rats trained with 20-s and 80-s target durations in the peak-interval (PI) procedure. Post-surgical data are taken from the last ten sessions of PI training.

    View in gallery
  • Ordinal-reproduction timing data for control (top panel) and vestibular lesioned rats (bottom panel). Reproduced durations for each of the three standard durations (800, 3200, and 12800 ms) are plotted in terms of percent maximum response as a function of the distribution of reproduced durations for trials demarcated by the cue lights + white noise (filled; solid lines) and trials demarcated only by self-initiated responses (unfilled; broken lines).

    View in gallery
  • Mean (± SE) coefficient of variation of the reproduced duration distributions plotted as a function of time for the three standard durations (800, 3200, and 12800 ms) for the control (circles) and vestibular lesioned rats (squares). Functions are presented separately for trials demarcated by the cue lights + white noise (filled; solid lines) and trials demarcated only by self-initiated responses (unfilled; broken lines).

    View in gallery


Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 8 8 2
Full Text Views 3 3 3
PDF Downloads 0 0 0
EPUB Downloads 0 0 0