Forming temporal expectations plays an instrumental role for the optimization of behavior and allocation of attentional resources. Although the effects of temporal expectations on visual attention are well-established, the question of whether temporal predictions modulate the behavioral outputs of the autonomic nervous system such as the pupillary response remains unanswered. Therefore, this study aimed to obtain an online measure of pupil size while human participants were asked to differentiate between visual targets presented after varying time intervals since trial onset. Specifically, we manipulated temporal predictability in the presentation of target stimuli consisting of letters which appeared after either a short or long delay duration (1.5 vs. 3 s) in the majority of trials (75%) within different test blocks. In the remaining trials (25%), no target stimulus was present to investigate the trajectory of preparatory pupillary response under a low level of temporal uncertainty. The results revealed that the rate of preparatory pupillary response was contingent upon the time of target appearance such that pupils dilated at a higher rate when the targets were expected to appear after a shorter as compared to a longer delay period irrespective of target presence. The finding that pupil size can track temporal regularities and exhibit differential preparatory response between different delay conditions points to the existence of a distributed neural network subserving temporal information processing which is crucial for cognitive functioning and goal-directed behavior.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Agostino P.V., , & Cheng R.K. (2016). Contributions of dopaminergic signaling to timing accuracy and precision. Curr. Opin. Behav. Sci., 8, 153–160.
Anderson B., , & Sheinberg D. (2008). Effects of temporal context and temporal expectancy on neural activity in inferior temporal cortex. Neuropsychologia, 46, 947–957.
Backs R.W., , & Walrath L.C. (1992). Eye movement and pupillary response indices of mental workload during visual search of symbolic displays. Appl. Ergon., 23, 243–254.
Balcı F., , & Simen P. (2016). A decision model of timing. Curr. Opin. Behav. Sci., 8, 94–101.
Binda P., , Pereverzeva M., , & Murray S.O. (2014). Pupil size reflects the focus of feature-based attention. J. Neurophysiol., 112, 3046–3052.
Bradshaw J.L. (1968). Pupillary changes and reaction time with varied stimulus uncertainty. Psychon. Sci., 13, 69–70.
Brainard D.H. (1997). The psychophysics toolbox. Spat. Vis., 10, 433–436.
Bueti D., , Bahrami B., , Walsh V., , & Rees G. (2010). Encoding of temporal probabilities in the human brain. J. Neurosci., 30, 4343–4352.
Buhusi C.V., , & Meck W.H. (2005). What makes us tick? Functional and neural mechanisms of interval timing. Nat. Rev. Neurosci., 6, 755–765.
Cellini N., , Mioni G., , Levorato I., , Grondin S., , Stablum F., , & Sarlo M. (2015). Heart rate variability helps tracking time more accurately. Brain Cogn., 101, 57–63.
Chun M.M., , & Potter M.C., (2001). The attentional blink and task switching within and across modalities. In Shapiro K. (Ed.), The limits of Attention: Temporal Constraints in Human Information Processing (pp. 20–35). New York, NY, USA: Oxford University Press.
Cornelissen F.W., , Peters E.M., , & Palmer J. (2002). The Eyelink Toolbox: Eye tracking with MATLAB and the Psychophysics Toolbox. Behav. Res. Methods Instrum. Comput., 34, 613–617.
Correa Á., , Lupiáñez J., , Milliken B., , & Tudela P. (2004). Endogenous temporal orienting of attention in detection and discrimination tasks. Percept. Psychophys., 66, 264–278.
Coull J.T. (2009). Neural substrates of mounting temporal expectation. PLoS Biol., 7, e1000166. doi:10.1371/journal.pbio.1000166 .
Coull J.T., , & Nobre A.C. (1998). Where and when to pay attention: The neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. J. Neurosci., 18, 7426–7435.
Coull J.T., , & Nobre A.C. (2008). Dissociating explicit timing from temporal expectation with fMRI. Curr. Opin. Neurobiol., 18, 137–144.
Coull J.T., , Nobre A.C., , & Frith C.D. (2001). The noradrenergic α2 agonist clonidine modulates behavioural and neuroanatomical correlates of human attentional orienting and alerting. Cereb. Cortex, 11, 73–84.
Coull J.T., , Cheng R.K., , & Meck W.H. (2011). Neuroanatomical and neurochemical substrates of timing. Neuropsychopharmacology, 36, 3–25.
Cravo A., , Rohenkohl G., , Wyart V., , & Nobre A. (2013). Temporal expectation enhances contrast sensitivity by phase entrainment of low-frequency oscillations in visual cortex. J. Neurosci., 33, 4002–4010.
Cui X., , Stetson C., , Montague P.R., , & Eagleman D.M. (2009). Ready… Go: Amplitude of the fMRI signal encodes expectation of cue arrival time. PLoS Biol., 7, e1000167. doi:10.1371/journal.pbio.1000167 .
Finnerty G.T., , Shadlen M.N., , Jazayeri M., , Nobre A.C., , & Buonomano D.V. (2015). Time in cortical circuits. J. Neurosci., 35, 13912–13916.
Ghose G., , & Maunsell J. (2002). Attentional modulation in visual cortex depends on task timing. Nature, 419(6907), 616–620. doi:10.1038/nature01057 .
Gilzenrat M.S., , Nieuwenhuis S., , Jepma M., , & Cohen J.D. (2010). Pupil diameter tracks changes in control state predicted by the adaptive gain theory of locus coeruleus function. Cogn. Affect. Behav. Neurosci., 10, 252–269.
Henry M.J., , & Hermann B. (2014). Low-frequency neural oscillations support dynamic attending in temporal context. Timing Time Percept., 2, 62–86.
Hoeks B., , & Levelt W.J. (1993). Pupillary dilation as a measure of attention: A quantitative system analysis. Behav. Res. Methods Instrum. Comput., 25, 16–26.
Hoppe D., , & Rothkopf C.A. (2016). Learning rational temporal eye movement strategies. Proc. Natl Acad. Sci. USA, 113, 8332–8337.
Hupé J.M., , Lamirel C., , & Lorenceau J. (2009). Pupil dynamics during bistable motion perception. J. Vis., 9, 10. doi: 10.1167/9.7.10 .
Jainta S., , Vernet M., , Yang Q., , & Kapoula Z. (2011). The pupil reflects motor preparation for saccades—Even before the eye starts to move. Front. Hum. Neurosci., 5, 97. doi: 10.3389/fnhum.2011.00097 .
Janssen P., , & Shadlen M.N. (2005). A representation of the hazard rate of elapsed time in macaque area LIP. Nat. Neurosci., 8, 234–241.
Jennings J.R., , Molen M.W., , & Steinhauer S.R. (1998). Preparing the heart, eye, and brain: Foreperiod length effects in a nonaging paradigm. Psychophysiology, 35, 90–98.
Kang O.E., , Huffer K.E., , & Wheatley T.P. (2014). Pupil dilation dynamics track attention to high-level information. PloS One, 9, e102463. doi: 10.1371/journal.pone.0102463 .
Karşılar H., , & Balcı F. (in press). Asymmetrical modulation of time perception by increase versus decrease in coherence of motion. Atten. Percept. Psychophys. doi: 10.3758/s13414-016-1181-9 .
Kinsbourne M., , & Warrington E.K. (1962). The effect of an after-coming random pattern on the perception of brief visual stimuli. Q.J. Exp. Psychol., 14, 223–234.
Knapen T., , De Gee J.W., , Brascamp J., , Nuiten S., , Hoppenbrouwers S., , & Theeuwes J. (2016). Cognitive and ocular factors jointly determine pupil responses under equiluminance. PLoS OneE, 11, e0155574. doi: 10.1371/journal.pone.0155574 .
Kononowicz T.W., , & Penney T.B. (2016). The contingent negative variation (CNV): Timing isn’t everything. Curr. Opin. Behav. Sci., 8, 231–237.
Kononowicz T.W., , & Van Rijn H. (2011). Slow potentials in time estimation: The role of temporal accumulation and habituation. Front. Integ. Neurosci., 5, 48. doi: 10.3389/fnint.2011.00048 .
Kononowicz T.W., , Van Rijn H., , & Meck W.H., (in press). Timing and time perception: A critical review of neural timing signatures before, during, and after the to-be-timed interval. In Wixted J., (Editor-in-Chief) and Serences J. (Ed., Vol. II), Sensation, Perception and Attention, Volume II – Stevens’ Handbook of Experimental Psychology and Cognitive Neuroscience (4th ed.) (pp. 1–35). New York, NY, USA: Wiley.
Laeng B., , Sirois S., , & Gredebäck G. (2012). Pupillometry: A window to the preconscious? Perspect. Psychol. Sci., 7, 18–27.
Lima B., , Singer W., , & Neuenschwander S. (2011). Gamma responses correlate with temporal expectation in monkey primary visual cortex. J. Neurosci., 31, 15919–15931.
Lusk N.A., , Petter E.A., , MacDonald C.J., , & Meck W.H. (2016). Cerebellar, hippocampal, and striatal time cells. Curr. Opin. Behav. Sci., 8, 186–191.
Macar F., , & Vidal F. (2009). Timing processes: An outline of behavioural and neural indices not systematically considered in timing models. Can. J. Exp. Psychol., 63, 227–239.
Matthews W.J., , & Meck W.H. (2016). Temporal cognition: Connecting subjective duration to perception, attention, and memory. Psychol. Bull., 142, 865–907.
Meissner K., , & Wittmann M. (2011). Body signals, cardiac awareness, and the perception of time. Biol. Psychol., 86, 289–297.
Moresi S., , Adam J.J., , Rijcken J., , Van Gerven P.W., , Kuipers H., , & Jolles J. (2008). Pupil dilation in response preparation. Int. J. Psychophysiol., 67, 124–130.
Mueller S.T., , & Weidemann C.T. (2012). Alphabetic letter identification: Effects of perceivability, similarity, and bias. Acta Psychol., 139, 19–37.
Naber M., , Frässle S., , Rutishauser U., , & Einhäuser W. (2013). Pupil size signals novelty and predicts later retrieval success for declarative memories of natural scenes. J. Vis., 13, 11. doi: 10.1167/13.2.11 .
Niemi P., , & Näätänen R. (1981). Foreperiod and simple reaction time. Psychol. Bull., 89, 133–162.
Namboodiri V.M.K., , Huertas M.A., , Monk K.J., , Shouval H.Z., , & Shuler M.G.H. (2015). Visually cued action timing in the primary visual cortex. Neuron, 86, 319–330.
Nobre A., , Correa A., , & Coull J. (2007). The hazards of time. Curr. Opin. Neurobiol., 17, 465–470.
Pelli D.G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spat. Vis., 10, 437–442.
Penney T.B., , Cheng X., , Leow Y.L., , Bay A.W.Y., , Wu E.W., , Herbst S.K., , & Yen S.C. (2016). Saccades and subjective time in seconds range duration reproduction. Timing Time Percept. , 4,187–206.
Pfeuty M., , Ragot R., , & Pouthas V. (2005). Relationship between CNV and timing of an upcoming event. Neurosci. Lett., 382, 106–111.
Pinheiro J.C., , & Bates D.M. (2000). Mixed-effects models in S and S-PLUS. New York, NY, USA: Springer Verlag.
Pollatos O., , Yeldesbay A., , Pikovsky A., , & Rosenblum M. (2014). How much time has passed? Ask your heart. Front. Neurorobot., 8,15. doi: 10.3389/fnbot.2014.00015 .
Raisig S., , Welke T., , Hagendorf H., , & Van der Meer E. (2010). I spy with my little eye: Detection of temporal violations in event sequences and the pupillary response. Int. J. Psychophysiol., 76, 1–8.
Reuter-Lorenz P., , Oonk H., , Barnes L., , & Hughes H. (1995). Effects of warning signals and fixation point offsets on the latencies of pro- versus antisaccades: Implications for an interpretation of the gap effect. Exp. Brain Res., 103,287–293.
Richer F., , & Beatty J. (1985). Pupillary dilations in movement preparation and execution. Psychophysiology, 22, 204–207.
Rivest F., , & Bengio Y. (2011). Adaptive drift-diffusion process to learn time intervals. arXiv:1103.2382v1.
Rolke B., , & Ulrich R., (2010). On the locus of temporal preparation: Enhancement of premotor processes. In Nobre A.C., & Coull J.T. (Eds), Attention and Time (pp. 227–242). Oxford, UK: Oxford University Press.
Schirmer A., , Meck W.H., , & Penney T.B. (2016). The socio-temporal brain: Connecting people in time. Trends Cogn. Sci., 20(10), 760–772.
Schultz W. (1998). Predictive reward signal of dopamine neurons. J. Neurophysiol., 80, 1–27.
Schultz W., , Dayan P., , & Montague P.R. (1997). A neural substrate of prediction and reward. Science, 275, 1593–1599.
Schütz A.C., , & Morrone M.C. (2010). Compression of time during smooth pursuit eye movements. Vis. Res., 50(24), 2702–2713.
Shuler M., , & Bear M. (2006). Reward timing in the primary visual cortex. Science , 311, 1606–1609.
Simen P., , Balcı F., , deSouza L., , Cohen J.D., , & Holmes P. (2011). A model of interval timing by neural integration. J. Neurosci., 31, 9238–9253.
Taylor J.R., , Elsworth J.D., , Lawrence M.S., , Sladek J.R., , Roth R.H., , & Redmond D.E. (1999). Spontaneous blink rates correlate with dopamine levels in the caudate nucleus of MPTP-treated monkeys. Exp. Neurol., 158, 214–220.
Terhune D.B., , Sullivan J.G., , & Simola J.M., (2016). Time dilates after spontaneous blinking. Curr. Biol ., 26, R59–R60.Thomaschke R., , Wagener A., , Kiesel A., , & Hoffmann J. (2011). The scope and precision of specific temporal expectancy: Evidence from a variable foreperiod paradigm. Atten. Percept. Psychophys., 73, 953–964.
Thomaschke R., , Hoffmann J., , Haering C., , & Kiesel A. (in press). Time-based expectancy for task relevant stimulus features. Timing Time Percept. doi: 10.1163/22134468-00002069 .
Toscano-Zapién A.L., , Velázquez-López D., , & Velázquez-Martínez D.N. (2016). Attentional mechanisms during the performance of a subsecond timing task. PloS One, 11, e0158508. doi: 10.1371/journal.pone.0158508 .
Tressoldi P.E., , Martinelli M., , Semenzato L., , & Cappato S. (2011). Let your eyes predict: Prediction accuracy of pupillary responses to random alerting and neutral sounds. Sage Open, 1–7. doi: 10.1177/2158244011420451 .
Van Orden K.F., , Limbert W., , Makeig S., , & Jung T.P. (2001). Eye activity correlates of workload during a visuospatial memory task. Hum. Factors, 43, 111–121.
Van Rijn H., , Kononowicz T.W., , Meck W.H., , Ng K.K., , & Penney T.B. (2011). Contingent negative variation and its relation to time estimation: A theoretical evaluation. Front. Int. Neurosci.. 5, 91. doi: 10.3389/fnint.2011.00091 .
Van Rijn H., , Dalenberg J.R., , Borst J.P., , & Sprenger S.A. (2012). Pupil dilation co-varies with memory strength of individual traces in a delayed response paired-associate task. PLoS One, 7, e51134. doi: 10.1371/journal.pone.0051134 .
Vangkilde S., , Petersen A., , & Bundesen C. (2013). Temporal expectancy in the context of a theory of visual attention. Phil. Trans. R. Soc. B. Biol. Sci., 368(1628), 20130054. doi: 10.1098/rtsb.2013.0054 .
Wierda S., , Van Rijn H., , Taatgen N., , & Martens S. (2012). Pupil dilation deconvolution reveals the dynamics of attention at high temporal resolution. Proc. Natl Acad. Sci. USA, 109, 8456–8460.
Willems C., , Damsma A., , Wierda S.M., , Taatgen N., , & Martens S. (2015). Training-induced changes in the dynamics of attention as reflected in pupil dilation. J. Cogn. Neurosci., 27, 1161–1171.
Wittmann M. (2013). The inner sense of time: How the brain creates a representation of duration. Nat. Rev. Neurosci., 14, 217–223.
Witte E.A., , & Marrocco R.T. (1997). Alteration of brain noradrenergic activity in rhesus monkeys affects the alerting component of covert orienting. Psychopharmacology, 132, 315–323.
Yamamoto K.I., , & Ozawa N. (1989). Increased firing of locus coeruleus neurons associated with preparatory set in rats. Neurosci. Lett., 106, 112–118.
Zylberberg A., , Oliva M., , & Sigman M. (2012). Pupil dilation: A fingerprint of temporal selection during the “attentional blink”. Front. Psychol., 3, 316. doi: 10.3389/fpsyg.2012.00316 .
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 896 | 124 | 27 |
Full Text Views | 326 | 26 | 0 |
PDF Views & Downloads | 152 | 48 | 0 |
Forming temporal expectations plays an instrumental role for the optimization of behavior and allocation of attentional resources. Although the effects of temporal expectations on visual attention are well-established, the question of whether temporal predictions modulate the behavioral outputs of the autonomic nervous system such as the pupillary response remains unanswered. Therefore, this study aimed to obtain an online measure of pupil size while human participants were asked to differentiate between visual targets presented after varying time intervals since trial onset. Specifically, we manipulated temporal predictability in the presentation of target stimuli consisting of letters which appeared after either a short or long delay duration (1.5 vs. 3 s) in the majority of trials (75%) within different test blocks. In the remaining trials (25%), no target stimulus was present to investigate the trajectory of preparatory pupillary response under a low level of temporal uncertainty. The results revealed that the rate of preparatory pupillary response was contingent upon the time of target appearance such that pupils dilated at a higher rate when the targets were expected to appear after a shorter as compared to a longer delay period irrespective of target presence. The finding that pupil size can track temporal regularities and exhibit differential preparatory response between different delay conditions points to the existence of a distributed neural network subserving temporal information processing which is crucial for cognitive functioning and goal-directed behavior.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 896 | 124 | 27 |
Full Text Views | 326 | 26 | 0 |
PDF Views & Downloads | 152 | 48 | 0 |