Time and space are commonly approached as two distinct dimensions, and rarely combined together in a single task, preventing a comparison of their interaction. In this project, using a version of a timing task with a spatial component, we investigate the learning of a spatio-temporal rule in animals. To do so, rats were placed in front of a five-hole nose-poke wall in a Peak Interval (PI) procedure to obtain a reward, with two spatio-temporal combination rules associated with different to-be-timed cues and lighting contexts. We report that, after successful learning of the discriminative task, a single Pavlovian session was sufficient for the animals to learn a new spatio-temporal association. This was seen as evidence for a beneficial transfer to the new spatio-temporal rule, as compared to control animals that did not experience the new spatio-temporal association during the Pavlovian session. The benefit was observed until nine days later. The results are discussed within the framework of adaptation to a change of a complex associative rule involving interval timing processes.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Allman M. J. , Teki S. , Griffiths T. D. , & Meck W. H. (2014). Properties of the internal clock: First- and second-order principles of subjective time. Annu. Rev. Psychol., 65, 743–771.
Aristotle. Physics, Book IV (Delta 208a-223b).
Balsam P. D. , Drew M. R. , & Yang C. (2002). Timing at the start of associative learning. Learn. Motiv., 33, 141–155.
Bevins R. A. , & Ayres J. J. B. (1995). One-trial context fear conditioning as a function of the interstimulus interval. Anim. Learn. Behav. 23, 400–410.
Blanco E. , Santamaría J. , Chamizo V. D. , & Rodrigo T. (2006). Area and peak shift effects in a navigation task with rats. Int. J. Psychol. Psychol. Ther., 6, 313–330.
Blankenship P. A. , Cheatwood J. L. , & Wallace D. G. (2017). Unilateral lesions of the dorsocentral striatum (DCS) disrupt spatial and temporal characteristics of food protection behavior. Brain Struct. Funct. , 222, 2697–2710.
Block F. , Kunkel M. , & Schwarza M. (1993). Quinolinic acid lesion of the striatum induces impairment in spatial learning and motor performance in rats. Neurosci. Lett. , 149, 126–128.
Buhusi C. V. (2014). Associative and temporal learning: new directions. Behav. Processes, 101, 1–3.
Buhusi C. V. , & Meck W. H. (2005). What makes us tick? Functional and neural mechanisms of interval timing. Nat. Rev. Neurosci., 6, 755–765.
Buhusi C. V. , & Meck W. H. (2006). Time sharing in rats: A peak-interval procedure with gaps and distracters. Behav. Processes, 71, 107–115.
Buhusi M. , Scripa I. , Williams C. L. , & Buhusi C. V. (2013). Impaired interval timing and spatial-temporal integration in mice deficient in CHL1, a gene associated with schizophrenia. Timing Time Percept. , 1, 21–38.
Casasanto D. , & Boroditsky L. (2008). Time in the mind: Using space to think about time. Cognition , 106, 579–593.
Church R. M. (2014). A resolution of the debate about associative and temporal learning. Behav. Processes, 101, 163–165.
Church R. M. , Getty D. J. , & Lerner N. D. (1976). Duration discrimination by rats. J. Exp. Psychol. Anim. Behav. Process., 2(4), 303–312.
Crystal J. D. (2009). Theoretical and conceptual issues in time-place discrimination. Eur. J. Neurosci., 30, 1756–1766.
Crystal J. D. , & Smith A. E. (2014). Binding of episodic memories in the rat. Curr. Biol., 24, 2957–2961.
Dallérac G. , Graupner M. , Knippenberg J. , Martinez R. C. , Tavares T. F. , Tallot L. , El Massioui N. , Verschueren A. , Höhn S. , Bertolus J. B. , Reyes A. , LeDoux J. E. , Schafe G. E. , Diaz-Mataix L. & Doyère V. (2017). Updating temporal expectancy of an aversive event engages striatal plasticity under amygdala control. Nat. Commun. 8, 13920. doi: 10.1038/ncomms13920.
Davis M. , Schlesinger L. S. , & Sorenson C. A. (1989). Temporal specificity of fear conditioning: effects of different conditioned stimulus-unconditioned stimulus intervals on the fear-potentiated startle effect. J. Exp. Psychol. Anim. Behav. Process., 15, 295–310.
Devenport J. A. , Luna L. D. , & Devenport L. D. (2000). Placement, retrieval, and memory of caches by thirteen-lined ground squirrels. Ethology, 106, 171–183.
Díaz-Mataix L. , Ruiz Martinez R. C. , Schafe G. E. , LeDoux J. E. , & Doyère V. (2013). Detection of a temporal error triggers reconsolidation of amygdala-dependent memories. Curr. Biol., 23, 467–472.
Eacott M. J. , & Easton A. (2010). Episodic memory in animals: Remembering which occasion. Neuropsychologia, 48, 2273–2280.
Eacott M. J. , & Norman G. (2004). Integrated memory for object, place, and context in rats: A possible model of episodic-like memory? J. Neurosci., 24, 1948–1953.
Eacott M. J. , Easton A. , & Zinkivskay A. (2005). Recollection in an episodic-like memory task in the rat. Learn. Mem., 12, 221–223.
Eichenbaum H. , Dudchenko P. , Wood E. , Shapiro M. , & Tanila H. (1999). The hippocampus, memory, and place cells: is it spatial memory or a memory space? Neuron, 23, 209–226.
Fortin N. J. , Agster K. L. , & Eichenbaum H. B. (2002). Critical role of the hippocampus in memory for sequences of events. Nat. Neurosci., 5, 458–462.
Gallistel C. R. (1990). Learning, development, and conceptual change. The organization of learning . Cambridge, MA, US: MIT Press.
Gallistel C. (2011). Mental Magnitudes. In Dehaene S. & Brannon E. M. (Eds), Space, time and number in the brain: Searching for the foundations of mathematical thought (pp. 3–12). London, UK: Academic Press.
Goodrich-Hunsaker N. J. , Hunsaker M. R. , & Kesner R. P. (2008). The interactions and dissociations of the dorsal hippocampus subregions: How the dentate gyrus, CA3, and CA1 process spatial information. Behav. Neurosci. , 122, 16–26.
Gould K. L. , Kelly D. M. , & Kamil A. C. (2010). What scatter-hoarding animals have taught us about small-scale navigation. Phil. Trans. R. Soc. B Biol. Sci., 365(1542), 901–914.
Guilhardi P. , & Church R. M. (2005). Dynamics of temporal discrimination. Learn. Behav. , 33, 399–416.
Gur E. , Duyan Y. , Balcı F. (2018). Spontaneous integration of temporal information: Implications for representational/computational capacity of animals. Anim. Cogn. 21, 3–19.
Hartley T. , Lever C. , Burgess N. , & O’Keefe J. (2014). Space in the brain: How the hippocampal formation supports spatial cognition. Phil. Trans. R. Soc. B Biol. Sci ., 369(1635), 20120510. doi: 10.1098/rstb.2012.0510.
Holder M. D. , & Roberts S. (1985). Comparison of timing and classical conditioning. J. Exp. Psychol. Anim. Behav. Process., 11, 172–193.
Jacobs L. F. (1992). Memory for cache locations in Merriam’s kangaroo rats. Anim. Behav., 43, 585–593.
Jacobs L. F. , & Liman E. R. (1991). Grey squirrels remember the locations of buried nuts. Anim. Behav., 41, 103–110.
Jacobs N. S. , Allen T. A. , Nguyen N. , Fortin N. J. (2013). Critical role of the hippocampus in memory for elapsed time. J. Neurosci., 33, 13888–13393.
Kesner R. P. , Gilbert P. E. , & Barua L. A. (2002). The role of the hippocampus in memory for the temporal order of a sequence of odors. Behav. Neurosci., 116, 286–290.
Kheifets A. , & Gallistel C. (2012). Mice take calculated risks. Proc. Natl Acad. Sci. USA , 109, 8776–8779.
Kraus B. J. , Robinson R. J. , White J. A. , Eichenbaum H. , & Hasselmo M. E. (2013). Hippocampal “time cells”: Time versus path integration. Neuron , 78, 1090–1101.
Kwok S. C. , Mitchell A. S. , & Buckley M. J. (2015). Adaptability to changes in temporal structure is fornix-dependent. Learn. Mem., 22, 354–359.
Lavenex P. , & Lavenex P. B. (2006). Spatial relational memory in 9-month-old macaque monkeys. Learn. Mem., 13, 84–96.
Lee A. S. , André J. M. , & Pittender C. (2014). Lesions of the dorsomedial striatum delay spatial learning and render cue-based navigation inflexible in a water maze task in mice. Front. Behav. Neurosci. , 8: 42. doi: 10.3389/fnbeh.2014.00042.
Lejeune H. , Ferrara A. , Simons F. , & Wearden J. H. (1997). Adjusting to changes in the time of reinforcement: Peak-interval transitions in rats. J. Exp. Psychol. Anim. Behav. Process, 23, 211–231.
Lejeune H. , Richelle M. , & Wearden J. H. (2006). About Skinner and time: Behavior-analytic contributions to research on animal timing. J. Exp. Anal. Behav., 85, 125–142.
MacDonald C. J. , Lepage K. Q. , Eden U. T. , & Eichenbaum H. (2011). Hippocampal “time cells” bridge the gap in memory for discontiguous events. Neuron, 71, 737–749.
Maguire E. A. , Frackowiak R. S. J. , & Frith C. D. (1997). Recalling routes around London: Activation of the right hippocampus in taxi drivers. J. Neurosci. , 17, 7103–7110.
Matell M. S. , Meck W. H. , & Nicolelis M. A. L. (2003). Interval timing and the encoding of signal duration by ensembles of cortical and striatal neurons. Behav. Neurosci., 117, 760–773.
McDonald R. J. , & White N. M. (1994) Parallel information processing in the water maze: Evidence for independent memory systems involving dorsal striatum and hippocampus. Behav. Neural Biol. , 66, 260–270.
Meck W. H. , Church R. M. , & Olton D. S. (1984). Hippocampus, time, and memory. Behav. Neurosci., 98, 3–22.
Meck W. H. , Church R. M. , & Matell M. S. (2013). Hippocampus, time, and memory — A retrospective analysis. Behav. Neurosci., 127, 642–654.
Mello G. B. M. , Soares S. , & Paton J. J. (2015). A scalable population code for time in the striatum. Curr. Biol., 25, 1113–1122.
Mendl M. , Laughlin K. , & Hitchcock D. (1997). Pigs in space: Spatial memory and its susceptibility to interference. Anim. Behav., 54, 1491–1508.
Michalka S. W. , Kong L. , Rosen M. L. , Shinn-Cunningham B. G. , & Somers D. C. (2015). Short-term memory for space and time flexibly recruit complementary sensory-biased frontal lobe attention networks. Neuron, 87, 882–892.
Molet M. , & Miller R. R. (2014). Timing: An attribute of associative learning. Behav. Processes, 101, 4–14.
Morris R. G. M. , Hagan J. J. , & Rawlins J. N. P. (1986). Allocentric spatial learning by hippocampectomised rats: A further test of the “spatial mapping” and “working memory” theories of hippocampal function. Q. J. Exp. Psychol. B, 38, 365–395.
Moser E. I. , Kropff E. , & Moser M.-B. (2008). Place cells, grid cells, and the brain’s spatial representation system. Annu. Rev. Neurosci., 31, 69–89.
Noyce A. , Cestero N. , Shinn-Cunningham B. , & Somers D. (2015). Space depends on time: Informational asymmetries in visual and auditory short-term memory. J. Vis., 15, 1054–1054.
O’Keefe, J., & Dostrovsky J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res ., 34, 171–175.
Olton D. S. , Collison C. , & Werz M. A. (1977). Spatial memory and radial arm maze performance of rats. Learn. Motiv., 8, 289–314.
Pastalkova E. , Itskov V. , Amarasingham A. , & Buzsáki G. (2008) Internally generated cell assembly sequences in the rat hippocampus. Science , 321(5894), 1322–1327.
Pavlov I. P. (1927). Conditioned reflexes. London, UK: Oxford University Press.
Piaget J. (1927/1969). The child's experience of time . New York, NY, USA: Ballantine Books.
Portugal G. S. , Wilson A. G. , & Matell M. S. (2011). Behavioral sensitivity of temporally modulated striatal neurons. Front. Integr. Neurosci., 5, 30. doi: 10.3389/fnint.2011.00030.
Sanabria F. , & Oldenburg L. (2014). Adaptation of timing behavior to a regular change in criterion. Behav. Processes, 101, 58–71.
Save E. , Poucet B. , Foreman N. , & Buhot M. (1992). Object exploration and reactions to spatial and nonspatial changes in hooded rats following damage to parietal cortex or hippocampal formation. Behav. Neurosci. 106, 447–456.
Skinner B. F. (1956). A case history in scientific method. Am. Psychol. , 11, 221–223.
Thorpe C. M. , & Wilkie D. M. (2002). Unequal interval time-place learning. Behav. Process, 58, 157–166.
Tosun T. , Gür E. , & Balcı F. (2016). Mice plan decision strategies based on previously learned time intervals, locations, and probabilities. Proc. Natl Acad. Sci.USA, 113, 787–792.
Wilkie D. M. , Carr J. A. R. , Galloway J. , Jo Parker K. , & Yamamoto A. (1997). Conditional time-place learning. Behav. Process., 40, 165–170.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 569 | 93 | 5 |
Full Text Views | 107 | 0 | 0 |
PDF Views & Downloads | 20 | 2 | 0 |
Time and space are commonly approached as two distinct dimensions, and rarely combined together in a single task, preventing a comparison of their interaction. In this project, using a version of a timing task with a spatial component, we investigate the learning of a spatio-temporal rule in animals. To do so, rats were placed in front of a five-hole nose-poke wall in a Peak Interval (PI) procedure to obtain a reward, with two spatio-temporal combination rules associated with different to-be-timed cues and lighting contexts. We report that, after successful learning of the discriminative task, a single Pavlovian session was sufficient for the animals to learn a new spatio-temporal association. This was seen as evidence for a beneficial transfer to the new spatio-temporal rule, as compared to control animals that did not experience the new spatio-temporal association during the Pavlovian session. The benefit was observed until nine days later. The results are discussed within the framework of adaptation to a change of a complex associative rule involving interval timing processes.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 569 | 93 | 5 |
Full Text Views | 107 | 0 | 0 |
PDF Views & Downloads | 20 | 2 | 0 |