The Role of Context and Attention on the Effect of Numerical Digit Value on Time Estimation

In: Timing & Time Perception
View More View Less
  • Institute of Psychology, University of Bern, Switzerland

Purchase instant access (PDF download and unlimited online access):

€29.95$34.95

The effect of task-irrelevant numerical values on perceived duration is well established. More precisely, higher numerical values (e.g., ‘9’) correspond to longer estimated durations than lower numerical values (e.g., ‘1’). So far, sparse evidence for two moderators, physical context and stimulus salience, has been provided. The contextual effect refers to an increased difference between estimated durations for low and high numerical values when Arabic digits are presented simultaneously with large physical quantities (e.g., ‘kg’), instead of small physical quantities (e.g., ‘g’). Similarly, the salience effect refers to the observation that differences in time estimations increase when attention is directed to numerical values’ magnitude. Using a time reproduction paradigm, we conducted four experiments to further investigate these two moderators and their possible interaction. In Experiments 1a and 1b, target intervals differed in duration (800, 1000, 1200 ms), numerical value (1, 2, 8, 9), and physical quantity (mg, kg, without). Experiments 2 and 3 additionally included the manipulation of the attentional focus (numerical value or physical quantity) and further quantities (cm, km). Our results supported the positive effect of numerical values on reproduced durations. This was also true for the moderating effect of stimulus salience, which was always significant. In contrast, no evidence for a contextual effect was observed even when participants’ attention was directed on the difference in physical quantity. In conclusion, our data challenge the existence of a moderating contextual effect, while supporting the moderating effect of stimulus salience.

  • Bi C. , Liu P. , Yuan X. , & Huang X. (2014). Working memory modulates the association between time and number. Perception, 43, 417426.

    • Search Google Scholar
    • Export Citation
  • Cai Z. G. , & Wang R. (2014). Numerical magnitude affects temporal memories but not time encoding. PloS One, 9, e83159. doi:10.1371/journal.pone.0083159.

    • Search Google Scholar
    • Export Citation
  • Chang A. Y. C. , Tzeng O. J. , Hung D. L. , & Wu D. H. (2011). Big time is not always long: numerical magnitude automatically affects time reproduction. Psychol. Sci., 22, 15671573.

    • Search Google Scholar
    • Export Citation
  • Cohen J. S. (1988). Statistical Power Analysis for the Behavioral Sciences, 2nd edn. Hillsdale, NJ, USA: Lawrence Erlbaum Associates.

  • Doob L. W. (1971). Patterning of Time. New Haven, CT, USA: Yale University Press.

  • Geisser S. , & Greenhouse S. W. (1958). An extension of box's results on the use of the F distribution in multivariate analysis. Ann. Math. Stat., 29, 885891.

    • Search Google Scholar
    • Export Citation
  • Gomez L. M. , & Robertson L. C. (1979). The filled-duration illusion: the function of temporal and nontemporal set. Percept. Psychophys., 25, 432438.

    • Search Google Scholar
    • Export Citation
  • Grondin S. , Meilleur-Wells G. , & Lachance R. (1999). When to start explicit counting in a time-intervals discrimination task: A critical point in the timing process of humans. J. Exp. Psychol. Hum. Percept. Perform., 25, 9931004.

    • Search Google Scholar
    • Export Citation
  • Hayashi M. J. , Valli A. , & Carlson S. (2013). Numerical quantity affects time estimation in the suprasecond range. Neurosci. Lett., 543, 711.

    • Search Google Scholar
    • Export Citation
  • Hogan H. W. (1975). Time perception and stimulus preference as a function of stimulus complexity. J. Pers. Soc. Psychol. , 31, 3235.

    • Search Google Scholar
    • Export Citation
  • Jeffreys H. (2003). Theory of Probability (3rd ed.). Oxford, UK: Oxford University Press (original work published 1961).

  • Lawrence M. A. (2016). ez: Easy analysis and visualization of factorial experiments [Computer software]. Retrieved from https://CRAN.R-project.org/package=ez.

    • Search Google Scholar
    • Export Citation
  • Long G. M. , & Beaton R. J. (1980). The contribution of visual persistence to the perceived duration of brief targets. Percept. Psychophys., 28, 422430.

    • Search Google Scholar
    • Export Citation
  • Lu A. , Hodges B. , Zhang J. , & Zhang J. X. (2009). Contextual effects on number–time interaction. Cognition, 113, 117122.

  • Mioni G. , Stablum F. , McClintock S. M. , & Grondin S. (2014). Different methods for reproducing time, different results. Atten. Percept. Psychophys., 76, 675681.

    • Search Google Scholar
    • Export Citation
  • Mo S. S. (1971). Judgment of temporal duration as a function of numerosity. Psychon. Sci., 24, 7172.

  • Mo S. S. (1974). Comparative judgment of temporal duration as a function of numerosity. Bull. Psychon. Soc., 3, 377379.

  • Mo S. S. , & Michalski V. A. (1972). Judgment of temporal duration of area as a function of stimulus configuration. Psychon. Sci. , 27, 9798.

    • Search Google Scholar
    • Export Citation
  • Morey R. D. , & Rouder J. N. (2018). BayesFactor: Computation of Bayes factors for common designs [Computer software]. Retrieved from https://CRAN.R-project.org/package=BayesFactor.

    • Search Google Scholar
    • Export Citation
  • Mulligan R. M. , & Schiffman H. R. (1979). Temporal experience as a function of organization in memory. Bull. Psychon. Soc. , 14, 417420.

    • Search Google Scholar
    • Export Citation
  • Oliveri M. , Vicario C. M. , Salerno S. , Koch G. , Turriziani P. , Mangano R. , Chillemi G. , & Caltagirone C. (2008). Perceiving numbers alters time perception. Neurosci. Lett., 438, 308311.

    • Search Google Scholar
    • Export Citation
  • Ono F. , & Kawahara J. I. (2007). The subjective size of visual stimuli affects the perceived duration of their presentation. Percept. Psychophys., 69, 952957.

    • Search Google Scholar
    • Export Citation
  • Ornstein R.E. (1969). On the Experience of Time. Harmondsworth, UK: Penguin.

  • Core Team R . (2018). R: A language and environment for statistical computing [Computer software]. Vienna, Austria: R Foundation for Statistical Computing.

    • Search Google Scholar
    • Export Citation
  • Rammsayer T. H. , & Troche S. J. (2014). In search of the internal structure of the processes underlying interval timing in the sub-second and second range: a confirmatory factor analysis approach. Acta Psychol. 174, 68–74.

    • Search Google Scholar
    • Export Citation
  • Rammsayer T. H. , & Ulrich R. (2005). No evidence for qualitative differences in the processing of short and long temporal intervals. Acta Psychol., 120, 141171.

    • Search Google Scholar
    • Export Citation
  • Rammsayer T. H. , & Verner M. (2014). The effect of nontemporal stimulus size on perceived duration as assessed by the method of reproduction. J. Vis., 14, 17, 110. doi:10.1167/14.5.17.

    • Search Google Scholar
    • Export Citation
  • Rammsayer T. H. , & Verner M. (2015). Larger visual stimuli are perceived to last longer from time to time: The internal clock is not affected by nontemporal visual stimulus size. J. Vis., 15, 5, 111. doi:10.1167/15.3.5.

    • Search Google Scholar
    • Export Citation
  • Rammsayer T. H. , & Verner M. (2016). Evidence for different processes involved in the effects of nontemporal stimulus size and numerical digit value on duration judgments. J. Vis., 16, 13, 114. doi:10.1167/16.7.13.

    • Search Google Scholar
    • Export Citation
  • Schiffman H. R. , & Bobko D. J. (1974). Effects of stimulus complexity on the perception of brief temporal intervals. J. Exp. Psychol., 103, 156159.

    • Search Google Scholar
    • Export Citation
  • Thomas E. A. , & Cantor N. E. (1975). On the duality of simultaneous time and size perception. Percept. Psychophys., 18, 4448.

  • Thomas E. A. , & Cantor N. E. (1976). Simultaneous time and size perception. Percept. Psychophys., 19, 353360.

  • Vicario C. M. (2011). Perceiving numbers affects the subjective temporal midpoint. Perception, 40, 2329.

  • Vicario C. M. , Pecoraro P. , Turriziani P. , Koch G. , Caltagirone C. , & Oliveri M. (2008). Relativistic compression and expansion of experiential time in the left and right space. PloS One, 3, e1716. doi:10.1371/journal.pone.0001716.

    • Search Google Scholar
    • Export Citation
  • Walsh V. (2003). A theory of magnitude: common cortical metrics of time, space and quantity. Trends Cogn. Sci., 7, 483488.

  • Xuan B. , Zhang D. , He S. , & Chen X. (2007). Larger stimuli are judged to last longer. J. Vis., 7, 2, 15. doi:10.1167/7.10.2.

  • Xuan B. , Chen X. C. , He S. , & Zhang D. R. (2009). Numerical magnitude modulates temporal comparison: an ERP study. Brain Res., 1269, 135142.

    • Search Google Scholar
    • Export Citation
  • Zakay D. (1990). The evasive art of subjective time measurement: Some methodological dilemmas. In Block R. A. (Ed.), Cognitive Models of Psychological Time (pp. 5984). Hillsdale, NJ: Lawrence Erlbaum Associates.

    • Search Google Scholar
    • Export Citation

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 243 81 7
Full Text Views 13 3 0
PDF Views & Downloads 13 3 0