The Effects of Visual Movement on Beat-Based vs. Duration-Based Temporal Perception

In: Timing & Time Perception
View More View Less
  • 1 Center for Psychology at University of Porto (CPUP), Faculty of Psychology and Education Sciences, University of Porto, Portugal
  • 2 Polytechnic Institute of, Portugal

Purchase instant access (PDF download and unlimited online access):

€29.95$34.95

It is known that moving visual stimuli (bouncing balls) have an advantage over static visual ones (flashes) in sensorimotor synchronization, such that the former match auditory beeps in driving synchronization while the latter do not. This occurs in beat-based synchronization but not in beat-based purely perceptual tasks, suggesting that the advantage is action-specific. The main goal of this study was to test the advantage of moving over static visual stimuli in a different perceptual timing system – duration-based perception – to determine whether the advantage is action-specific in a broad sense, i.e., if it excludes both beat-based and duration-based perception. We asked a group of participants to perform different tasks with three stimulus types: auditory beeps, visual bouncing balls (moving) and visual flashes (static). First, participants performed a duration-based perception task in which they judged whether intervals were speeding up or slowing down; then they did a synchronization task with isochronous sequences; finally, they performed a beat-based perception task in which they judged whether sequences sounded right or wrong. Bouncing balls outperformed flashes and matched beeps in synchronization. In the duration-based perceptual task, beeps, balls and flashes were equivalent, but in beat-based perception beeps outperformed balls and flashes. Our findings suggest that the advantage of moving over static visual stimuli is grounded on action rather than perception in a broad sense, in that it is absent in both beat-based and duration-based perception.

  • Barne L. C. , Sato J. R. , de Camargo R. Y. , Claessens P. M. E. , Caetano M. S. and Cravo A. M. (2018). A common representation of time across visual and auditory modalities, Neuropsychologia 119, 223232.

    • Search Google Scholar
    • Export Citation
  • Berens P. (2009). CircStat: a MATLAB toolbox for circular statistics, J. Stat. Softw.. 31, 121. doi: 10.18637/jss.vo31.i10.

  • Biswas A. , Hedge S. , Jhunjhunwala K. , and Pal P. K. (2016). Two sides of the same coin: Impairment in perception of temporal components of rhythm and cognitive functions in Parkinson’s disease, Basal Ganglia 6, 6370.

    • Search Google Scholar
    • Export Citation
  • Breska A. and Ivry R. B. (2018). Double dissociation of single-interval and rhythmic temporal prediction in cerebellar degeneration and Parkinson’s disease, Proc. Natl Acad. Sci. USA 115, 1228312288.

    • Search Google Scholar
    • Export Citation
  • Carroll C. A. , O’Donnell, B. F., Shekhar A. and Hetrick W. P. (2009). Timing dysfunctions in schizophrenia span from millisecond to several-second durations, Brain Cogn. 70, 181190.

    • Search Google Scholar
    • Export Citation
  • Chen Y. , Repp B. H. and Patel A. D. (2002). Spectral decomposition of variability in synchronization and continuation tapping: comparisons between auditory and visual pacing and feedback conditions, Hum. Mov. Sci. 21, 515532.

    • Search Google Scholar
    • Export Citation
  • Chen J. L. , Penhune V. B. and Zatorre R. J. (2008). Moving on time: brain network for auditory-motor synchronization is modulated by rhythm complexity and musical training, J. Cogn. Neurosci. 20, 226239.

    • Search Google Scholar
    • Export Citation
  • Comstock D. C. , Hove M. J. and Balasubramaniam R. (2018). Sensorimotor synchronization with auditory and visual modalities: behavioral and neural differences. Front. Comput. Neurosci. 12, 53. doi: 10.3389/fncom.2018.00053.

    • Search Google Scholar
    • Export Citation
  • Fisher N. I. (1993). Statistical Analysis of Circular Data. Press Syndicate of the University of Cambridge, Cambridge, UK.

  • Fornaciai M. , Markouli E. and Di Luca M. (2018). Modality-specific temporal constraints for state-dependent interval timing, Sci. Rep. 8, 10043. doi: 10.1038/s41598-018-28258-4.

    • Search Google Scholar
    • Export Citation
  • Fujii S. and Schlaug G. (2013). The Harvard Beat Assessment Test (H-BAT): a battery for assessing beat perception and production and their dissociation. Fron. Hum. Neurosci.7, 771. doi: 10.33.89/fnhum.2013.00771.

    • Search Google Scholar
    • Export Citation
  • Gan L. , Huang Y. , Zhou L. , Qian C. and Wu X. (2015). Synchronization to a bouncing ball with a realistic motion trajectory, Sci. Rep. 5, 11974. doi: 10.1038/srep11974.

    • Search Google Scholar
    • Export Citation
  • Glenburg A. M. and Jona M. (1991). Temporal coding in rhythm tasks revealed by modality effects, Mem. Cogn. 19, 514522.

  • Grahn J. A. (2012). See what I hear? Beat perception in auditory and visual rhythms. Exp. Brain Res. 220, 5161.

  • Grahn J. A. and Brett M. (2009). Impairment of beat-based rhythm discrimination in Parkinson’s disease, Cortex 45, 5461.

  • Grahn J. A. , Henry M. J. and McAuley J. D. (2011). FMRI investigation of cross-modal interactions in beat perception: Audition primes vision, but not vice versa. NeuroImage, 54, 12311243.

    • Search Google Scholar
    • Export Citation
  • Grondin S. (2010). Timing and time perception: a review of recent behavioral and neuroscience findings and theoretical directions, Attent. Percept. Psychophys. 72, 561582.

    • Search Google Scholar
    • Export Citation
  • Grube M. , Lee K. H. , Griffiths T. D. , Barker A. T. and Woodruff P. W. (2010). Transcranial magnetic theta-burst stimulation of the human cerebellum distinguishes absolute, duration-based from relative, beat-based perception of subsecond time intervals, Front. Psychol. 1, 171. doi: 10.3389/fpsyg.2010.00171.

    • Search Google Scholar
    • Export Citation
  • Guttman S. E. , Gilroy L. A. and Blake R. (2005). Hearing what the eyes see: auditory encoding of visual temporal sequences, Psychol. Sci. 16, 228235.

    • Search Google Scholar
    • Export Citation
  • Hove M. J. , Spivey M. J. and Krumhansl C. (2010). Compatibility of motion facilitates visuomotor synchronization, J. Exp. Psychol. Hum. Percept. Perform. 36, 15251534.

    • Search Google Scholar
    • Export Citation
  • Hove M. J. , Fairhurst M. T. , Kotz S. A. and Keller P. E. (2013a). Synchronizing with auditory and visual rhythms: an fMRI assessment of modality differences and modality appropriateness, NeuroImage. 67, 313321.

    • Search Google Scholar
    • Export Citation
  • Hove M. J. , Iversen J. R. , Zhang A. and Repp B. H. (2013b). Synchronization with competing visual and auditory rhythms: bouncing ball meets metronome, Psychol. Res. 77, 388398.

    • Search Google Scholar
    • Export Citation
  • Iversen J. R. , Patel A. D. , Nicodemus B. and Emmorey K. (2015). Synchronization to auditory and visual rhythms in hearing and deaf individuals, Cognition. 134, 232244.

    • Search Google Scholar
    • Export Citation
  • Ivry R. B. , Spencer R. M. , Zelaznik H. N. Zelaznik H. N. and Diedrichsen J. (2002). The cerebellum and event timing, Ann. N. Y. Acad. Sci. 978, 302317.

    • Search Google Scholar
    • Export Citation
  • Keele S. W. , Nicoletti R. , Ivry R. I. and Pokorny R. A. (1989). Mechanisms of perceptual timing: Beat-based or interval-based judgements? Psychol. Res. 50, 251256.

    • Search Google Scholar
    • Export Citation
  • McAuley J. D. and Jones M. R. (2003). Modeling effects of rhythmic context on perceived duration: a comparison of interval and entrainment approaches to short-interval timing, J. Exp. Psychol. Hum. Percept. Perform. 29, 11021125. doi: 10.103//0096-1523.29.6.1102.

    • Search Google Scholar
    • Export Citation
  • Merchant H. and Lafuente V. (2008). Neurobiology of interval timing (1st ed.). New York, NY, USA: Springer.

  • Morillon B. and Baillet S. (2017). Motor origin of temporal predictions in auditory attention, Proc. Natl Acad. Sci. USA 114, E8913E8921. https://doi.org/10.1073/pnas.1705373114.

    • Search Google Scholar
    • Export Citation
  • Murai Y. and Yotsumoto Y. (2016). Timescale- and sensory modality-dependency of the central tendency of time perception, PLoS One 11, e0158921. https://doi.org/10.1371/journal.pone.0158921.

    • Search Google Scholar
    • Export Citation
  • Pashler H. (2001). Perception and production of brief durations: beat-based versus interval-based timing, J. Exp. Psychol. Hum. Percept. Perform. 27, 485493.

    • Search Google Scholar
    • Export Citation
  • Patel A. D. , Iversen J. R. , Chen Y. and Repp B. H. (2005). The influence of metricality and modality on synchronization with a beat, Exp. Brain Res. 163, 226238.

    • Search Google Scholar
    • Export Citation
  • Peterburs J. , Nitsch A. M. , Miltner W. H. and Straube T. (2013). Impaired representation of time in schizophrenia is linked to positive symptoms and cognitive demand, PLoS One 8, 615. doi: 10.1371/journal.pone.0067615.

    • Search Google Scholar
    • Export Citation
  • Pollok B. , Krause V. , Butz M. and Schinitzler A. (2009). Modality specific functional interaction in sensorimotor synchronization, Hum. Brain Mapp. 30, 17831790.

    • Search Google Scholar
    • Export Citation
  • Rammsayer T. and Pichelmann S. (2018). Visual–auditory differences in duration discrimination depend on modality-specific, sensory-automatic temporal processing: Converging evidence for the validity of the Sensory-Automatic Timing Hypothesis, Q. J. Exp. Psychol. 71, 23642377.

    • Search Google Scholar
    • Export Citation
  • T. H. Rammsayer and S. J. Troche (2014). In search of the internal structure of the processes underlying interval timing in the sub-second and second range: a confirmatory factor analysis approach, Acta Psychol. 147, 6874.

    • Search Google Scholar
    • Export Citation
  • Rammsayer T. H. , Borter N. and Troche S. J. (2015). Visual-auditory differences in duration discrimination of intervals in the subsecond and second range. Front. Psychol. 6, 1626. doi: 10.3389/fpsyg.2015.01626.

    • Search Google Scholar
    • Export Citation
  • Repp B. H. (2005). Sensorimotor synchronization: a review of the tapping literature. Psychon. Bull. Rev. 12, 969992.

  • Repp, B. H. and Panel, A. (2002). Auditory dominance in temporal processing: new evidence from synchronization with simultaneous visual and auditory sequences, J. Exp. Psychol. Hum. Percept. Perform. 28, 10851099.

    • Search Google Scholar
    • Export Citation
  • Silva S. and Castro S. L. (2016). Moving stimuli facilitate synchronization but not temporal perception, Front. Psychol. 7, 1798. doi: 10.3389/fpsyg.2016.01798.

    • Search Google Scholar
    • Export Citation
  • Stanislaw H. and Todorov N. (1999). Calculation of signal detection theory measures, Behav. Res. Methods Instrum. Comput.. 31, 137149.

    • Search Google Scholar
    • Export Citation
  • Stauffer C. C. , Haldemann J. , Troche S. J. and Rammsayer T. H. (2012). Auditory and visual temporal sensitivity: evidence from hierarchical structure of modality-specific and modality-independent levels of temporal information processing, Psychol. Res. 76, 2031.

    • Search Google Scholar
    • Export Citation
  • Su Y.-H. (2014). Audiovisual beat induction in complex auditory rhythms: [point-light figure movement as an effective visual beat, Acta Psychol. (Amst.) 151, 4050.

    • Search Google Scholar
    • Export Citation
  • Teki S. , Grube M. , Kumar S. and Griffiths T. D. (2011). Distinct neural substrates of duration-based and beat-based auditory timing, J. Neurosci. 31, 38053812.

    • Search Google Scholar
    • Export Citation
  • Thoenes S. and Oberfeld D. (2017). Meta-analysis of time perception and temporal processing in schizophrenia: Differential effects on precision and accuracy, Clin. Psychol. Rev. 54, 4464.

    • Search Google Scholar
    • Export Citation
  • Yee W. , Holleran S. and Jones M. R. (1994). Sensitivity to event timing in regular and irregular sequences: influences of musical skill, Percept. Psychophys. 56, 461471.

    • Search Google Scholar
    • Export Citation
  • Zelaznik H. N. , Spencer R. M. and Ivry R. B. (2002). Dissociation of explicit and implicit timing in repetitive tapping and drawing movements, J. Exp. Psychol. Hum. Percept. Perform. 28, 575588. https://doi.org/10.1037/0096-1523.28.3.575.

    • Search Google Scholar
    • Export Citation

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 255 122 16
Full Text Views 16 9 1
PDF Views & Downloads 5 3 1