The capacity to process and incorporate temporal information into behavioural decisions is an integral component for functioning in our environment. Whereas previous research has extended adults’ temporal processing capacity down the developmental timeline to infants, little research has examined infants’ capacity to use that temporal information in guiding their future behaviours and whether this capacity can detect event-timing differences on the order of milliseconds. The present study examined 3- and 6-month-old infants’ ability to process temporal durations of 700 and 1200 milliseconds by means of the Visual Expectation Cueing Paradigm in which the duration of a central stimulus predicted either a target appearing on the left or on the right of a screen. If 3- and 6-month-old infants could discriminate the milliseconds difference between the centrally-presented temporal cues, then they would correctly make anticipatory eye movements to the proper target location at a rate above chance. Results indicated that 6- but not 3-month-olds successfully discriminated and incorporated events’ temporal information into their visual expectations. Brain maturation and the perceptual capacity to discriminate the relative timing values of temporal events may account for these findings. This developmental limitation in processing and discriminating events on the scale of milliseconds, consequently, may be a limiting factor for attentional and cognitive development that has not previously been explored.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Addyman C. , Rocha S. , & Mareschal D. (2014). Mapping the origins of time: scalar errors in infant time estimation. Dev. Psychol, 50, 2030–2035.
Adler S. A. , & Gallego P. (2014). Search asymmetry and eye movements in infants and adults. Atten. Percept. Psychophys., 76, 1590–1608.
Adler S. A. , & Haith M. M. (2003). The nature of infants’ visual expectations for event content. Infancy, 4, 389–421. doi:10.1207/S15327078IN0403_05.
Adler S. A. , & Orprecio J. (2006). The eyes have it: visual pop‐out in infants and adults. Dev. Sci., 9, 189–206. doi:10.1111/j.1467-7687.2006.00479.x.
Adler S. A. , Haith M. M. , Arehart D. M. , & Lanthier E. C. (2008). Infants’ visual expectations and the processing of time. J. Cogn. Dev., 9, 1–25.
Allan L. G. (1998). The influence of the scalar timing model on human timing research. Behav. Proc., 44, 101–117.
Aslin R. N. (2007). What’s in a look? Dev. Sci. , 10 , 48–53.
Baillargeon R. , Spelke E. S. , & Wasserman S. (1985). Object permanence in five-month-old infants. Cognition, 20, 191–208. doi:10.1016/0010-0277(85)90008-3.
Baker T. J. , Tse J. , Gerhardstein P. , & Adler S. A. (2008). Contour integration by 6-month-old infants: discrimination of distinct contour shapes. Vision Res., 48, 136–148.
Boswell A. E. , Garner E. E. , & Berg W. K. (1994). Changes in cardiac components of anticipation in 2-, 4-, and 8-month-old infants [Abstract]. Psychophysiology, 31, S28.
Brannon E. M. , Suanda S. , & Libertus K. (2007). Temporal discrimination increases in precision over development and parallels the development of numerosity discrimination. Dev. Sci., 10, 770–777.
Brannon E. M. , Libertus M. E. , Meck W. H. , & Woldorff M. G. (2008). Electrophysiological measures of time processing in infant and adult brains: Weber’s law holds. J. Cogn. Neurosci., 20, 193–203. doi:10.1162/jocn.2008.20016.
Buhusi C. V. , & Meck W. H. (2005). What makes us tick? Functional and neural mechanisms of interval timing. Nat. Rev. Neurosci., 6, 755–765.
Canfield R. L. , & Haith M. M. (1991). Active expectations in 2-and 3-month-old infants: complex event sequences. Dev. Psychol, 27, 198–208.
Canfield R. L. , Smith E. G. , Brezsnyak M. P. , Snow K. L. , Aslin R. N. , Haih M. M. , Wass T. S. , & Adler S. A. (1997). Information processing through the first year of life: A longitudinal study using the visual expectation paradigm. Monogr. Soc. Res. Child Dev., 62, 1–160.
Cashon C. H. , & Cohen L. B. (2000). Eight-month-old infants’ perception of possible and impossible events. Infancy, 1(4), 429-446.
Clifton R. K. (1974). Cardiac conditioning and orienting in the infant. In Obrist P. A. , Black A. H. , Brener J. , & DiCara L. V. (Eds.), Cardiovascular psychophysiology: Current issues in response mechanisms, biofeedback and methodology (pp. 479–504). Chicago, IL, USA: Aldine.
Cohen L. B. (2004). Uses and misuses of habituation and related preference paradigms. Infant Child Dev., 13, 349–352.
Colombo J. , & Richman W. A. (2002). Infant timekeeping: attention and temporal estimation in 4-month-olds. Psychol. Sci., 13, 475-479.
Comishen K. J. , Bialystok E. , & Adler S. A. (2019). The impact of bilingual environments on selective attention in infancy. Dev. Sci., e12797. doi: 10.1111/desc.12797.
Coull J.T. , & Droit-Volet S. (2018). Explicit understanding of duration develops implicitly through action. Trends Cogn. Sci. , 22, 923–937.
de Hevia M. D. , Izard V. , Coubart A. , Spelke E. S. , & Streri A. (2014). Representations of space, time, and number in neonates. Proc. Natl Acad. Sci. USA, 111:4809–4813.
Deoni S. C. L. , Mercure E. , Blasi A. , Gasston D. , Thomson A. , Johnson M. , Williams S. C. R. , & Murphy D. G. M. (2011). Mapping infant brain myelination with magnetic resonance imaging. J. Neurosci., 31, 784–791.
Fagan J. F. (1970). Memory in the infant. J Exp. Child Psychol., 9, 217–226.
Fantz R. L. (1964). Visual experience in infants: decreased attention to familiar patterns relative to novel ones. Science, 146, 668–670.
Ferrandez A. M. , Hugueville L. , Lehéricy S. , Poline J.B. , Marsault C. , Pouthas V. (2003). Basal ganglia and supplementary motor area subtend duration perception: an fMRI study. NeuroImage , 19, 1532–1544.
Ferrera V. P. , & Lisberger S. G. (1995). Attention and target selection for smooth pursuit eye movements. J. Neurosci. , 15, 7472–7484.
Gibbon J. (1977). Scalar expectancy theory and Weber’s law in animal timing. Psychol. Rev., 84, 279–325.
Gitelman D. R. (2002). ILAB: a program for postexperimental eye movement analysis. Behav. Res. Methods Instrum. Comput., 34, 605–612.
Gould H. J. 3. , Cusick C. G. , Pons T. P. , & Kaas J. H. (1986). The relationship of corpus callosum connections to electrical stimulation maps of motor, supplementary motor, and the frontal eye fields in owl monkeys. J. Comp. Neurol., 247, 297–325.
Grahn J. A. , & Brett M. (2007). Rhythm and beat perception in motor areas of the brain. J. Cogn. Neurosci., 19, 893–906.
Grondin S. (2010). Timing and time perception: a review of recent behavioral and neuroscience findings and theoretical directions. Atten. Percept. Psychophys., 72, 561–582.
Haith M. M. (1994). Visual expectations as the first step toward the development of future-oriented processes. In Haith M. M. , Benson J. B. , Roberts R. J. , & Pennington B. F. (Eds.), The development of future-oriented processes (pp. 11 – 38). Chicago, IL, USA: University of Chicago Press.
Haith M. M. , & McCarty M. E. (1990). Stability of visual expectations at 3.0 months of age. Dev . Psychol, 26, 68–74.
Haith M. M. , Hazan C. , & Goodman G. S. (1988). Expectation and anticipation of dynamic visual events by 3.5-month-old babies. Child Dev., 467-479.
Haith M. M. , Wentworth N. , & Canfield R. L. (1993).The formation of expectations in early infancy. In Rovee-Collier C. & Lipsitt L. P. (Eds), Advances in infancy research, Vol. 8 (pp. 251–297). Norwood, NJ, USA: Ablex.
Haith M. M. , Benson J. B. , Roberts. Jr , R. J., & Pennington B. F. (1994). D. The John and T. MacArthur Catherine Foundation series on mental health and development. The development of future-oriented processes. ). Chicago, IL, USA: University of Chicago Press.
Hanes D. P. , Patterson II , W. F. & Schall J. D. (1998). Role of frontal eye fields in countermanding saccades: visual, movement, and fixation activity. J. Neurophysiol., 79, 817–834.
Hass J. , & Herrmann J. M. (2012). The neural representation of time: An information-theoretic perspective. Neural Comput., 24, 1519–1552.
Hellmer K. , Söderlund H. , & Gredebäck G. (2018). The eye of the retriever: developing episodic memory mechanisms in preverbal infants assessed through pupil dilation. Dev. Sci., 21, e12520. doi: 10.1111/desc.12520.
Huerta M. F. , Krubitzer L. A. , & Kaas J. H. (1987). Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys II. Cortical connections. J. Comp. Neurol., 265, 332–361.
Hunter M. A. , & Ames E. W. (1988). A multifactor model of infant preferences for novel and familiar stimuli. In Rovee-Collier C. & Lipsitt L. P. (Eds.), Advances in infancy research , Vol. 5 (pp. 69–95). Norwood, NJ: Ablex.
Hunter M. A. , Ames E. W. , & Koopman R. (1983). Effects of stimulus complexity and familiarization time on infant preferences for novel and familiar stimuli. Dev. Psychol, 19, 338–352.
Ivry R. B. , & Spencer R. M. (2004). The neural representation of time. Curr. opin. Neurobiol., 14, 225–232.
Keating E. G. (1991). Frontal eye field lesions impair predictive and visually-guided pursuit eye movements. Exp. Brain Res., 86, 311–323.
Krauzlis R. J. , & Dill N. (2002). Neural correlates of target choice for pursuit and saccades in the primate superior colliculus. Neuron , 35, 355–363.
Krauzlis R. J. , Basso M. A. , & Wurtz R. H. (2000). Discharge properties of neurons in the rostral superior colliculus of the monkey during smooth-pursuit eye movements. J.Neurophysiol. , 84, 876–891.
McCormack T. , Brown G. D. A. , Maylor E. A. , Darby R. J. , & Green D. (1999). Developmental changes in time estimation: Comparing childhood and old age. Dev. Psychol, 35, 1143-1155.
McIntosh R. D. , & Schenk T. (2009). Two visual streams for perception and action: current trends. Neuropsychologia , 47, 1391–1396.
Mita A. , Mushiake H. , Shima K. , Matsuzaka Y. , & Tanji J. (2009). Interval time coding by neurons in the presupplementary and supplementary motor areas. Nat. Neurosci., 12, 502–507.
Mushiake H. , Inase M. , & Tanji J. (1991). Neuronal activity in the primate premotor, supplementary, and precentral motor cortex during visually guided and internally determined sequential movements. J. Neurophysiol., 66, 705–718.
Provasi J. , Rattat A. C. , & Droit-Volet S. (2011). Temporal bisection in 4-month-old infants. J. Exp. Psychol. Anim. Behav. Process., 37, 108–113.
Ramkumar P. , Lawlor P. N. , Glaser J. I. , Wood D. K. , Phillips A. N. , Segraves M. A. , & Kording K. P. (2016). Feature-based attention and spatial selection in frontal eye fields during natural scene search. Journal of Neurophysiology, 116, 1328–1343.
Robinson D. L. , & Kertzman C. (1995). Covert orienting of attention in macaques. III. Contributions of the superior colliculus. J. Neurophysiol., 74, 713–721.
Saayman G. , Ames E. W. , & Moffett A. (1964). Response to novelty as an indicator of visual discrimination in the human infant. J Exp. Child Psychol., 1, 189–198.
Schiller,P.H. (1985). A model for the generation of visually guided saccadic eye movements. In Rose D. and Dobson V. G. (Eds), Models of the visual cortex (pp. 62–70). New York, NY, USA: Wiley.
Schiller P. H. , & Logothetis N. K. (1990). The color-opponent and broad-band channels of the primate visual system. Trends Neurosci., 13, 392–398.
Schilling T. H. (2000). Infants’ looking at possible and impossible screen rotations: The role of familiarization. Infancy, 1, 389–402.
Shima K. , & Tanji J. (1998). Both supplementary and presupplementary motor areas are crucial for the temporal organization of multiple movements. J. Neurophysiol., 80, 3247–3260.
Smith A. B. , Giampietro V. , Brammer M. , Halari R. , Simmons A. , & Rubia K. (2011). Functional development of fronto-striato-parietal networks associated with time perception. Front. Hum. Neurosci. , 11, 136. doi: 10.3389/fnhum.2011.00136.
Tanji J. (2001). Sequential organization of multiple movements: involvement of cortical motor areas. Annu. Rev. Neurosci., 24, 631–651.
Tulving E. (2002). Episodic memory: from mind to brain. Annu. Rev. Psychol., 53, 1-25.
Ungerleider L. G. , & Haxby J. V. (1994). ‘What’ and ‘where’ in the human brain. Curr. Opin. Neurobiol. , 4, 157–165.
von Hofsten C. (1980). Predictive reaching for moving objects by human infants. J Exp. Child Psychol., 30, 369–382.
von Hofsten C. (2007). Action in development. Dev. Sci. , 10, 54-60. doi: 10.1111/j.1467-7687.2007.00564.x.
von Hofsten C. , Vishton P. , Spelke E. S. , Feng Q. , & Rosander K. (1998). Predictive action in infancy: tracking and reaching for moving objects. Cognition, 67, 255–285.
Wang Z. , Kruijne W. , & Theeuwes J. (2012). Lateral interactions in the superior colliculus produce saccade deviation in a neural field model. Vision Res. , 62, 66–74.
Wearden J. H. (2005). Origins and development of internal clock theories of psychological time. Psychol. Fr. , 50 , 7–25.
Wentworth N. , & Haith M. M. (1992). Event-specific expectations of 2-and 3-month-old infants. Dev. Psychol, 28, 842–850.
Wentworth N. , Benson J. B. , & Haith M. M. (2000). The development of infants’ reaches for stationary and moving targets. Child Dev., 71, 576–601.
Zhou H.-H. , & Thompson K. G. (2009). Cognitively directed spatial selection in the frontal eye field in anticipation of visual stimuli to be discriminated. Vision Res., 49, 1205–1215.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 548 | 109 | 6 |
Full Text Views | 24 | 5 | 0 |
PDF Views & Downloads | 31 | 8 | 0 |
The capacity to process and incorporate temporal information into behavioural decisions is an integral component for functioning in our environment. Whereas previous research has extended adults’ temporal processing capacity down the developmental timeline to infants, little research has examined infants’ capacity to use that temporal information in guiding their future behaviours and whether this capacity can detect event-timing differences on the order of milliseconds. The present study examined 3- and 6-month-old infants’ ability to process temporal durations of 700 and 1200 milliseconds by means of the Visual Expectation Cueing Paradigm in which the duration of a central stimulus predicted either a target appearing on the left or on the right of a screen. If 3- and 6-month-old infants could discriminate the milliseconds difference between the centrally-presented temporal cues, then they would correctly make anticipatory eye movements to the proper target location at a rate above chance. Results indicated that 6- but not 3-month-olds successfully discriminated and incorporated events’ temporal information into their visual expectations. Brain maturation and the perceptual capacity to discriminate the relative timing values of temporal events may account for these findings. This developmental limitation in processing and discriminating events on the scale of milliseconds, consequently, may be a limiting factor for attentional and cognitive development that has not previously been explored.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 548 | 109 | 6 |
Full Text Views | 24 | 5 | 0 |
PDF Views & Downloads | 31 | 8 | 0 |