Items in working memory are typically defined by various attributes, such as colour (for visual objects) and pitch (for auditory objects). The attribute of duration can be signalled by multiple modalities, but has received relatively little attention from a working-memory perspective. While the existence of specialist stores (e.g., the phonological loop and visuospatial sketchpad) is often asserted in the wider working-memory literature, the interval-timing literature has more often implied a unitary (amodal) store. Here we combine two modelling frameworks to probe the basis of working memory for duration; a Bayesian-observer framework, previously used to explain behaviour in duration-reproduction tasks, and mixture models, describing distributions of continuous reports about items in working memory. We modelled different storage mechanisms, such as a limited number of fixed-resolution slots or a resource spread between items at a cost to resolution, in order to ask whether items from different sensory modalities are maintained in separate, independent stores. We initially analysed data from 32 participants, who memorised between one and eight items before reproducing the duration of a randomly selected target. In separate blocks, items could be all visual, all auditory, or an alternating mixture of both. A small control experiment included a further condition with precuing of target modality. Certain kinds of slot models, resource models, and combination models incorporating both mechanisms could account for the data. However, looking across all plausible models, the decline in performance with increasing memory load was most consistent with a single store for event durations, regardless of stimulus modality.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Acerbi, L., Wolpert, D. M. and Vijayakumar, S. (2012). Internal representations of temporal statistics and feedback calibrate motor-sensory interval timing. PLoS Comput. Biol., 8, e1002771. doi: 10.1371/journal.pcbi.1002771.
Alvarez, G. A. and Cavanagh, P. (2004). The capacity of visual short-term memory is set both by visual information load and by number of objects. Psychol. Sci., 15, 106–111. doi: 10.1111/j.0963-7214.2004.01502006.x.
Baars, B. J. (2005). Global workspace theory of consciousness: toward a cognitive neuroscience of human experience. Prog. Brain Res., 150, 45–53. doi: 10.1016/S0079-6123(05)50004-9.
Baddeley, A. (2012). Working memory: theories, models, and controversies. Annu. Rev. Psychol., 63, 1–29. doi: 10.1146/annurev-psych-120710-100422.
Ball, D. M., Arnold, D. H. and Yarrow, K. (2017). Weighted integration suggests that visual and tactile signals provide independent estimates about duration. J.Exp. Psychol. Hum. Percept. Perform., 43, 868–880. doi: 10.1037/xhp0000368.
Bartolo, R. and Merchant, H. (2009). Learning and generalization of time production in humans: rules of transfer across modalities and interval durations. Exp. Brain Res., 197, 91–100. doi: 10.1007/s00221-009-1895-1.
Bausenhart, K. M., Dyjas, O. and Ulrich, R. (2014). Temporal reproductions are influenced by an internal reference: explaining the vierordt effect. Acta Psychol. (Amst.), 147, 60–67. doi: 10.1016/j.actpsy.2013.06.011.
Bays, P. M. and Husain, M. (2008). Dynamic shifts of limited working memory resources in human vision. Science, 321, 851–854. doi: 10.1126/science.1158023.
Bays, P. M., Catalao, R. F. G. and Husain, M. (2009). The precision of visual working memory is set by allocation of a shared resource. J. Vis., 9, 7. doi: 10.1167/9.10.7.
Brainard, D. H. (1997). The psychophysics toolbox. Spat. Vis., 10, 433–436.
Bratzke, D. and Ulrich, R. (in press). Short-term memory of temporal information revisited. Psychol. Res. doi: 10.1007/s00426-020-01343-y.
Bratzke, D., Seifried, T. and Ulrich, R. (2012). Perceptual learning in temporal discrimination: asymmetric cross-modal transfer from audition to vision. Exp. Brain Res., 221, 205–210. doi: 10.1007/s00221-012-3162-0.
Bratzke, D., Quinn, K. R., Ulrich, R. and Bausenhart, K. M. (2016). Representations of temporal information in short-term memory: Are they modality-specific? Acta Psychol. (Amst.), 170, 163–167. doi: 10.1016/j.actpsy.2016.08.002.
Bryce, D., Seifried-Dübon, T. and Bratzke, D. (2015). How are overlapping time intervals perceived? Evidence for a weighted sum of segments model. Acta Psychol. (Amst.), 156, 83–95. doi: 10.1016/j.actpsy.2014.12.007.
Buonomano, D. V. and Merzenich, M. M. (1995). Temporal information transformed into a spatial code by a neural network with realistic properties. Science, 267, 1028–1030. doi: 10.1126/science.7863330.
Cicchini, G. M., Arrighi, R., Cecchetti, L., Giusti, M. and Burr, D. C. (2012). Optimal encoding of interval timing in expert percussionists. J. Neurosci., 32, 1056–1060. doi: 10.1523/JNEUROSCI.3411-11.2012.
Cowan, N. (2001). The magical number 4 in short-term memory: a reconsideration of mental storage capacity. Behav. Brain Sci., 24(1), 87–114, 114–185. doi: 10.1017/s0140525x01003922.
Cowan, N., Saults, J. S. and Blume, C. L. (2014). Central and peripheral components of working memory storage. J. Exp. Psychol. Gen., 143(5), 1806–1836. doi: 10.1037/a0036814.
Di Luca, M. and Rhodes, D. (2016). Optimal perceived timing: integrating sensory information with dynamically updated expectations. Sci. Rep., 6, 28563. doi: 10.1038/srep28563.
Endress, A. D., Korjoukov, I. and Bonatti, L. L. (2017). Category-based grouping in working memory and multiple object tracking. Vis. Cogn., 25, 868–887. doi: 10.1080/13506285.2017.1349229.
Fan, Z. and Yotsumoto, Y. (2018). Multiple time intervals of visual events are represented as discrete items in working memory. Front. Psychol., 9, 1340. doi: 10.3389/fpsyg.2018.01340.
Filippopoulos, P. C., Hallworth, P., Lee, S. and Wearden, J. H. (2013). Interference between auditory and visual duration judgements suggests a common code for time. Psychol. Res., 77, 708–715. doi: 10.1007/s00426-012-0464-6.
Fougnie, D., Suchow, J. W. and Alvarez, G. A. (2012). Variability in the quality of visual working memory. Nat. Commun., 3, 1229. doi: 10.1038/ncomms2237.
Fougnie, D., Zughni, S., Godwin, D. and Marois, R. (2015). Working memory storage is intrinsically domain specific. J. Exp. Psychol. Gen., 144, 30–47. doi: 10.1037/a0038211.
Fukuda, K., Vogel, E., Mayr, U. and Awh, E. (2010). Quantity, not quality: the relationship between fluid intelligence and working memory capacity. Psychon. Bull. Rev., 17, 673–679. doi: 10.3758/17.5.673.
Gamache, P.-L. and Grondin, S. (2010). Sensory-specific clock components and memory mechanisms: investigation with parallel timing. Eur. J. Neurosci., 31, 1908–1914. doi: 10.1111/j.1460-9568.2010.07197.x.
Gibbon, J., Church, R. M. and Meck, W. H. (1984). Scalar timing in memory. Ann. N. Y.Acad. Sci., 423, 52–77. doi: 10.1111/j.1749-6632.1984.tb23417.x.
Hardman, K. O., Vergauwe, E. and Ricker, T. J. (2017). Categorical working memory representations are used in delayed estimation of continuous colors. J. Exp. Psychol. Hum. Percept. Perform., 43, 30–54. doi: 10.1037/xhp0000290.
Hartcher-O’Brien, J., Di Luca, M. and Ernst, M. O. (2014). The duration of uncertain times: Audiovisual information about intervals is integrated in a statistically optimal fashion. PloS ONE, 9, e89339. doi: 10.1371/journal.pone.0089339.
Heron, J., Aaen-Stockdale, C., Hotchkiss, J., Roach, N. W., McGraw, P. V. and Whitaker, D. (2012). Duration channels mediate human time perception. Proc. R. Soc. B Biol. Sci., 279, 690–698. doi: 10.1098/rspb.2011.1131.
Ivry, R. B. and Schlerf, J. E. (2008). Dedicated and intrinsic models of time perception. Trends Cogn. Sci., 12, 273–280. doi: 10.1016/j.tics.2008.04.002.
Jazayeri, M. and Shadlen, M. N. (2010). Temporal context calibrates interval timing. Nat. Neurosci., 13, 1020–1026. doi: 10.1038/nn.2590.
Kohl, C., Spieser, L., Forster, B., Bestmann, S. and Yarrow, K. (2019). The neurodynamic decision variable in human multi-alternative perceptual choice. J. Cogn. Neurosci., 31, 262–277. doi: 10.1162/jocn_a_01347.
Lapid, E., Ulrich, R. and Rammsayer, T. (2009). Perceptual learning in auditory temporal discrimination: no evidence for a cross-modal transfer to the visual modality. Psychon. Bull. Rev., 16, 382–389. doi: 10.3758/PBR.16.2.382.
Luck, S. J. and Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390, 279–281. doi: 10.1038/36846.
Ma, W. J., Husain, M. and Bays, P. M. (2014). Changing concepts of working memory. Nat. Neurosci., 17, 347–356. doi: 10.1038/nn.3655.
Manohar, S. G. and Husain, M. (2016). Working memory for sequences of temporal durations reveals a volatile single-item store. Front. Psychol., 7, 1655. doi: 10.3389/fpsyg.2016.01655.
Miller, G. A. (1956). The magical number seven plus or minus two: some limits on our capacity for processing information. Psychol. Rev., 63, 81–97.
Morgan, M. J., Giora, E. and Solomon, J. A. (2008). A single “stopwatch” for duration estimation, a single “ruler” for size. J. Vis., 8, 14. doi: 10.1167/8.2.14.
Nagarajan, S. S., Blake, D. T., Wright, B. A., Byl, N. and Merzenich, M. M. (1998). Practice-related improvements in somatosensory interval discrimination are temporally specific but generalize across skin location, hemisphere, and modality. J. Neurosci., 18, 1559–1570. doi: 10.1523/JNEUROSCI.18-04-01559.1998.
Narkiewicz, M., Lambrechts, A., Eichelbaum, F. and Yarrow, K. (2015). Humans don’t time subsecond intervals like a stopwatch. J. Exp. Psychol. Hum. Percept. Perform., 41, 249–263. doi: 10.1037/a0038284.
Ogden, R. S., Wearden, J. H. and Jones, L. A. (2010). Are memories for duration modality specific? Q. J. Exp. Psychol. (Hove), 63, 65–80. doi: 10.1080/17470210902815422.
Palmer, J. (1990). Attentional limits on the perception and memory of visual information. J. Exp. Psychol. Hum. Percept. Perform., 16, 332–350. doi: 10.1037//0096-1523.16.2.332.
Paton, J. J. and Buonomano, D. V. (2018). The neural basis of timing: distributed mechanisms for diverse functions. Neuron, 98, 687–705. doi: 10.1016/j.neuron.2018.03.045.
Price, K. V., Storn, R. N. and Lampinen, J. A. (2005). Differential Evolution: A Practical Approach to Global Optimization. Springer, Berlin, Germany.
Rammsayer, T. H., Buttkus, F. and Altenmüller, E. (2012). Musicians do better than nonmusicians in both auditory and visual timing tasks. Music Percept., 30, 85–96. doi: 10.1525/mp.2012.30.1.85.
Rattat, A.-C. and Picard, D. (2012). Short-term memory for auditory and visual durations: evidence for selective interference effects. Psychol. Re., 76, 32–40. doi: 10.1007/s00426-011-0326-7.
Roachs, N. W., McGraw, P. V., Whitaker, D. J. and Heron, J. (2017). Generalization of prior information for rapid Bayesian time estimation. Proc. Natl Acad. Sci. U.S.A., 114, 412–417. doi: 10.1073/pnas.1610706114.
Roseboom, W., Fountas, Z., Nikiforou, K., Bhowmik, D., Shanahan, M. and Seth, A. K. (2019). Activity in perceptual classification networks as a basis for human subjective time perception. Nat. Commun., 10, 267. doi: 10.1038/s41467-018-08194-7.
Teki, S. and Griffiths, T. D. (2014). Working memory for time intervals in auditory rhythmic sequences. Front. Psychol., 5, 1329. doi: 10.3389/fpsyg.2014.01329.
Teki, S. and Griffiths, T. D. (2016). Brain bases of working memory for time intervals in rhythmic sequences. Front. Neurosci., 10, 239. doi: 10.3389/fnins.2016.00239.
Uittenhove, K., Chaabi, L., Camos, V. and Barrouillet, P. (2019). Is working memory storage intrinsically domain-specific? J. Exp. Psychol. Gen., 148, 2027–1057. doi: 10.1037/xge0000566.
van den Berg, R., Shin, H., Chou, W.-C., George, R. and Ma, W. J. (2012). Variability in encoding precision accounts for visual short-term memory limitations. Proc. Natl Acad. Sci. U.S.A., 109, 8780–8785. doi: 10.1073/pnas.1117465109.
van Rijn, H. and Taatgen, N. A. (2008). Timing of multiple overlapping intervals: How many clocks do we have? Acta Psychol. (Amst.), 129, 365–375. doi: 10.1016/j.actpsy.2008.09.002.
Wearden, J. H. and Lejeune, H. (2008). Scalar properties in human timing: conformity and violations. Q. J. Exp. Psychol. (Hove), 61(4), 569–587. doi: 10.1080/17470210701282576.
Weiss, Y., Simoncelli, E. P. and Adelson, E. H. (2002). Motion illusions as optimal percepts. Nat. Neurosci., 5, 598–604. doi: 10.1038/nn0602-858.
Wilken, P. and Ma, W. J. (2004). A detection theory account of change detection. J. Vis., 4, 1120–1135. doi: 10.1167/4.12.11.
Wong, J. H., Peterson, M. S. and Thompson, J. C. (2008). Visual working memory capacity for objects from different categories: a face-specific maintenance effect. Cognition, 108, 719–731. doi: 10.1016/j.cognition.2008.06.006.
Wood, J. N. (2007). Visual working memory for observed actions. J. Exp. Psychol. Gen., 136, 639–652. doi: 10.1037/0096-3445.136.4.639.
Zhang, W. and Luck, S. J. (2008). Discrete fixed-resolution representations in visual working memory. Nature, 453, 233–235. doi: 10.1038/nature06860.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 559 | 128 | 9 |
Full Text Views | 38 | 4 | 0 |
PDF Views & Downloads | 47 | 12 | 0 |
Items in working memory are typically defined by various attributes, such as colour (for visual objects) and pitch (for auditory objects). The attribute of duration can be signalled by multiple modalities, but has received relatively little attention from a working-memory perspective. While the existence of specialist stores (e.g., the phonological loop and visuospatial sketchpad) is often asserted in the wider working-memory literature, the interval-timing literature has more often implied a unitary (amodal) store. Here we combine two modelling frameworks to probe the basis of working memory for duration; a Bayesian-observer framework, previously used to explain behaviour in duration-reproduction tasks, and mixture models, describing distributions of continuous reports about items in working memory. We modelled different storage mechanisms, such as a limited number of fixed-resolution slots or a resource spread between items at a cost to resolution, in order to ask whether items from different sensory modalities are maintained in separate, independent stores. We initially analysed data from 32 participants, who memorised between one and eight items before reproducing the duration of a randomly selected target. In separate blocks, items could be all visual, all auditory, or an alternating mixture of both. A small control experiment included a further condition with precuing of target modality. Certain kinds of slot models, resource models, and combination models incorporating both mechanisms could account for the data. However, looking across all plausible models, the decline in performance with increasing memory load was most consistent with a single store for event durations, regardless of stimulus modality.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 559 | 128 | 9 |
Full Text Views | 38 | 4 | 0 |
PDF Views & Downloads | 47 | 12 | 0 |