Occurrence of mycotoxins in agricultural products represents a risk for human and animal health. Therefore, there is a requirement of strategies to mitigate their harmful impacts. This study investigated the effects of phytic acid (IP6) on the immunological response of pro-(interleukin (IL)-1β, IL-6, IL-8, IL-10, interferon (IFN)-γ, tumour necrosis factor (TNF)-α) and anti-inflammatory (IL-10) cytokines and β-defensins 1 (pBD-1) and 2 (pBD-2) in porcine jejunal explants exposed to deoxynivalenol (DON) and fumonisin B1 (FB1). The explants were exposed to the following treatments: control, DON (10 μM), DON plus IP6 2.5 mM or 5 mM, FB1 (70 μM), FB1 IP6 plus 2.5 or 5 mM. The expression levels of the cytokines were measured by RT-qPCR. The exposure to FB1 and DON induced intestinal lesions. The presence of 2.5 and 5 mM IP6 inhibited the morphological changes induced by the mycotoxins. The explants exposed to DON showed an increase in the expression of IL-1β and IL-8 and a decrease in the levels of IL-6, IFN-γ, IL-10 and pBD-2. IP6 (5 mM) decreased the expression of IL-8 and increased the expression in pBD-1 and 2 compared to DON alone. FB1 induced a significant decrease in the levels of most of the pro-inflammatory cytokines, IL-10 and pBD-1, and an increase in IL-1β expression. The addition of IP6 5 mM induced significant increase in TNF-α expression compared to FB1. Taken together, the results suggest IP6 modulates immunological changes induced by DON and FB1 on intestinal mucosa resulting in beneficial effects that contribute to intestinal homeostasis and health.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Abu El-Saad, A.S. and Mahmoud, H.M., 2007. Phytic acid exposure alters aflatoxin B1-induced reproductive and oxidative toxicity in albino rats (Rattus norvegicus). Evidence-Based Complementary and Alternative Medicine 6: 331-341.https://doi.org/10.1093/ecam/nem137
Alassane-Kpembi, I., Puel, O., Pinton, P., Cossalter, A.M., Chou, T.C. and Oswald, I.P., 2016. Co-exposure to low doses of the food contaminants deoxynivalenol and nivalenol has a synergistic inflammatory effect on intestinal explants. Archives of Toxicology 91: 2677-2687.https://doi.org/10.1007/s00204-016-1902-9
Alizadeh, A., Braber, S., Akbari, P., Garssen, J. and Fink-Gremmels, J., 2015. Deoxynivalenol affects markers of gut health after low-dose, short-term exposure of growing pigs. Toxins 7: 2071-2095.https://doi.org/10.3390/toxins7062071
Bevins, C.L., Martin-Porter, E. and Ganz, T., 1999. Defensins and innate host defense of the gastrointestinal tract. Gut 45: 911-915.http://dx.doi.org/10.1136/gut.45.6.911
Bizzarri, M., Dinicola, S., Bevilacqua, A. and Cucina, A., 2016. Broad spectrum anticancer activity of myo-inositol and inositol hexakisphosphate. International Journal of Endocrinology 2016: 5616807.https://doi.org/10.1155/2016/5616807
Bouhet, S. and Oswald, I.P., 2005. The effects of mycotoxins, fungal food contaminants, on the intestinal epithelial cell-derived innate immune response. Veterinary Immunology and Immunopathology 108: 199-209.https://doi.org/10.1016/j.vetimm.2005.08.010
Bouhet, S. and Oswald, I.P., 2007. The intestine as a possible target for fumonisin toxicity. Molecular Nutrition and Food Research 51: 925-931.https://doi.org/10.1002/mnfr.200600266
Bracarense, A.P.F.L., Lucioli, J., Grenier, B., Pacheco, G.D., Moll, W.D., Schatzmyr, G. and Oswald, I.P., 2012. Chronic ingestion of deoxynivalenol and fumonisin, alone or in interaction, induces morphological and immunological changes in the intestine of piglets. British Journal of Nutrition 107: 1776-1786.https://doi.org/10.1017/S0007114511004946
Cano, P.M., Seeboth, J., Meurens, F., Cognie, J., Abrami, R., Oswald, I.P. and Guzylack-Piriou, L., 2013. Deoxynivalenol as a new factor in the persistence of intestinal inflammatory diseases: an emerging hypothesis through possible modulation of Th17-mediated response. PLoS ONE 8: e53647.https://doi.org/10.1371/journal.pone.0053647
Cobo, E.R. and Chadee, K., 2013. Antimicrobial human β-defensins in the colon and their role in infectious and non-infectious disease. Pathogens 2: 177-192.https://doi.org/10.3390/pathogens2010177
Devriendt, B., Gallois, M., Verdonck, F., Wache, Y., Bimczok, D., Oswald, I.P., Goddeeris, B.M. and Cox, E., 2009. The food contaminant fumonisin B1 reduces the maturation of porcine CD11R1(+) intestinal antigen presenting cells and antigen-specific immune responses, leading to a prolonged intestinal ETEC infection. Veterinary Research 40: 40.https://doi.org/10.1051/vetres/2009023
Dybvig, T., Facci, M., Gerdts, V. and Wilson, H., 2011. Biological roles of the host defense peptides: lessons from transgenic animals and bioengineered tissues. Cell and Tissue Research 343: 213-225.https://doi.org/10.1007/s00441-010-1075-4
Elahi, S., Buchana, R.M., Attah-Poku, S., Townsend, H.G.G., Babiuk, L.A. and Gerdts, V., 2006. The host defense peptide beta-defensin 1 confers protection againstBordetella pertussis in newborn piglets. Infection and Immunity 7: 2338-2352.https://doi.org/10.1128/IAI.74.4.2338-2352.2006
Fellermann, K. and Stange, E.F., 2001. Defensins – innate immunity at the epithelial frontier. European Journal of Gastroenterology and Hepatology 13: 7771-776.
'Defensins – innate immunity at the epithelial frontier ' () 13 European Journal of Gastroenterology and Hepatology : 7771 -776.
Graf, E. and Eaton, J.W., 1990. Antioxidant functions of phytic acid. Free Radical Biology and Medicine 8: 61-69.https://doi.org/10.1016/0891-5849(90)90146-A
Graziani, F., Pujol, A., Nicoletti, C., Pinton, P., Armand, L., Di Pasquale, E., Oswald, I.P., Perrier, J. and Maresca, M., 2015. The food-associated ribotoxin deoxynivalenol modulates inducible NO synthase in human intestinal cell model. Toxicological Sciences 145: 372-382.https://doi.org/10.1093/toxsci/kfv058
Grenier, B., Loureiro-Bracarense, A.P., Lucioli, J., Pacheco, G.D., Cossalter, A.M., Moll, W.D., Schatzmayr, G. and Oswald, I.P., 2011. Individual and combined effects of subclinical doses of deoxynivalenol and fumonisins in piglets. Molecular Nutrition and Food Research 55: 761-771.https://doi.org/10.1002/mnfr.201000402
Gu, M.J., Han, S.E., Hwang, K., Mayer, E., Reisinger, N., Schatzmayr, D., Park, B.C., Han, S.H. and Yun, C-H., 2019. Hydrolyzed fumonisin B1 induces less inflammatory responses than fumonisin B1 in the co-culture model of porcine intestinal epithelial and immune cells. Toxicology Letters 305: 110-116.https://doi.org/10.1016/j.toxlet.2019.01.013
Halloy, D.J., Gustin, P.G., Bouhet, S. and Oswald, I.P., 2005. Oral exposure to culture material extract containing fumonisins predisposes swine to the development of pneumonitis caused byPasteurella multocida. Toxicology 213: 34-44.https://doi.org/10.1016/j.tox.2005.05.012
Han, F., Zhang, H., Xio, X., Xiong, H., Song, D., Zong, X. and Wang, Y., 2015. Porcine β-defensin 2 attenuates inflammation and mucosal lesions in dextran sodium sulfate-induced colitis. Journal of Immunology 194: 1882-1893.https://doi.org/10.4049/jimmunol.1402300
Huang, C., Feng, L., Jiang, W-D., Wu, P., Liu, Y., Zeng, Y-Y., Jiang, J., Kuang, S-Y., Tang, L. and Zhou, X.-Q., 2019. Deoxynivalenol decreased intestinal immune function related to NF-κB and TOR signalling in juvenile grass carp (Ctenopharyngdon idella). Fish and Shellfish Immunology 84: 470-484.https://doi.org/10.1016/j.fsi.2018.10.039
Huang, S., Xie, K., Bucana, C.D., Ullrich, S.E. and Bar-Eli, M., 1996. Interleukin 10 suppresses tumor growth and metastasis of human melanoma cells: potential inhibition of angiogenesis. Clinical Cancer Research 2: 1969-1979.
'Interleukin 10 suppresses tumor growth and metastasis of human melanoma cells: potential inhibition of angiogenesis ' () 2 Clinical Cancer Research : 1969 -1979.
Jenab, P.M. and Thompson, L., 2000. Phytic acid in wheat bran affects colon morphology, cell differentiation and apoptosis. Carcinogenesis 21: 1547-1552.https://doi.org/10.1093/carcin/21.8.1547
Jijon, H.B., Panenka, W.J., Madsen, K.L. and Parsons, H.G., 2002. MAPkinases contribute to IL-8 secretion by intestinal epithelial cells via a posttranscriptional mechanism. American Journal of Physiology – Cell Physiology 283: 31-41.https://doi.org/10.1152/ajpcell.00113.2001
Jung, H.C., Eckmann, L., Yang, S.K., Panja, A., Fierer, J., Morzycka-Wroblewska, E. and Kagnoff, M.F., 1995. A distinct array of proinflammatory cytokines is expressed in human colon epithelial cells in response to bacterial invasion. Journal of Clinical Investigation 95: 55-65.
'A distinct array of proinflammatory cytokines is expressed in human colon epithelial cells in response to bacterial invasion ' () 95 Journal of Clinical Investigation : 55 -65.
Kapral, M., Sosnicki, S., Wawszczyk, J. and Weglarz, L., 2014. Influence of inositol hexaphosphato on the expression of selected proliferation markers in IL-1β-stimulated intestinal epithelial cells. Acta Poloniae Pharmaceutica 71: 987-993.
'Influence of inositol hexaphosphato on the expression of selected proliferation markers in IL-1β-stimulated intestinal epithelial cells ' () 71 Acta Poloniae Pharmaceutica : 987 -993.
Khatiwada, J., Verghese, M., Davis, S. and Williams, L.L., 2011. Green tea, phytic acid, and inositol in combination reduced the incidence of azoxymethane-induced colon tumors in Fisher 344 male rats. Journal of Medicinal Food 14: 1313-1320.
'Green tea, phytic acid, and inositol in combination reduced the incidence of azoxymethane-induced colon tumors in Fisher 344 male rats ' () 14 Journal of Medicinal Food : 1313 -1320.
Lewis, A.M., Varghese, S., Xu, H. and Alexander, H.R., 2006. Interleukin-1 and cancer progression: the emerging role of interleukin-1 receptor antagonist as a novel therapeutic agent in cancer treatment. Journal of Translational Medicine 4: 48.https://doi.org/10.1186/1479-5876-4-48
Maresa, M., 2013. From the gut to the brain: journey and pathophysiological effects of the food-associates trichothecene mycotoxin deoxynivalenol. Toxins 5: 784-820.htttps://doi.org/10.3390/toxins5040784
Maresca, M. and Fantini, J., 2010. Some food-associated mycotoxins as potential risk factor in humans predisposed to chronic intestinal inflammatory diseases. Toxicon 56: 282-294.https://doi.org/10.1016/j.toxicon.2010.04.016
Maresca, M., Yahi, N., Younés-Sakr, L., Boyron, M., Caporiccio, B. and Fantini, J., 2008. Both direct and indirect effects account for the pro-inflammatory activity of enteropathogenic mycotoxins n the human intestinal epithelium: stimulation of interleukin-8 secretion, potentiation of interleukin-1β effect and increase in the transepithelial passage of commensal bacteria. Journal of Toxicology Applied Pharmacology 228: 84-92.https://doi.org/10.1016/j.taap.2007.11.013
Meissonnier, G.M., Pinton, P., Laffitte, J., Cossalter, A.M., Gong, Y.Y., Bertin, G., Galtier, P. and Oswald, I.P., 2008. Immunotoxicity of aflatoxin B1: impairment of the cell-mediated response to vaccine antigen and modulation of cytokine expression. Toxicology and Applied Pharmacology 231: 142-149.https://doi.org/10.1016/j.taap.2008.04.004
Moraes, F.P. and Colla, L.M., 2006. Alimentos funcionais e nutracêuticos: definições, legislação e benefícios à saúde. Revista Eletrônica de Farmácia 3: 109-122.
'Alimentos funcionais e nutracêuticos: definições, legislação e benefícios à saúde ' () 3 Revista Eletrônica de Farmácia : 109 -122.
Norazalina, S., Norhaizan, M.E., Hairuszah, I. and Norashareena, M.S., 2010. Anticarcinogenic efficacy of phytic acid extracted from rice bran on azoxymethane-induced colon carcinogenesis in rats. Experimental and Toxicologic Pathology 62: 259-268.https://doi.org/10.1016/j.etp.2009.04.002
Okazaki, Y. and Katayama, T., 2014. Dietary phytic acid modulates characteristics of the colonic luminal environment and reduces serum levels of proinflammatory cytokines in rats fed a high-fat diet. Nutrition Research 34: 1085-1091.https://doi.org/10.1016/j.nutres.2014.09.012
Oswald, I.P., 2006. Role of intestinal epithelial cells in the innate immune defense of the pig intestine. Veterinary Research 37: 359-368.https://doi.org/10.1051/vetres:2006006
Oswald, I.P., Desautels, C., Laffitte, J., Fournout, S., Peres, S.Y., Odin, M., Le Bars, P., Le Bars, J. and Fairbrother, J.M., 2003. The mycotoxin, fumonisin B1, increases intestinal colonization by pathogenicEscherichia coli in pigs. Applied and Environmental Microbiology 69: 5870-5874.https://doi.org/10.1128/AEM.69.10.5870-5874.2003
Pacheco, G.D., Silva, C.A., Pinton, P., Oswald, I. and Bracarense, A.P.F.R.L., 2012. Phytic acid protects porcine intestinal epithelial cells from deoxynivalenol (DON) cytotoxicity. Experimental and Toxicology Pathology 64: 345-347.https://doi.org/10.1016/j.etp.2010.09.008ff.ffhal-02652261f
Pestka, J.J., 2008. Mechanisms of deoxynivalenol-induced gene expression and apoptosis. Food Additives and Contaminants: Part A 25: 1128-1140.https://doi.org/10.1080/02652030802056626
Pierron, A., Mimoun, S., Murate, L.S., Loiseau, N., Lippi, Y., Bracarense, A.P.F.R.L., Schatzmayr, G., He, J.W., Zhou, T., Moll, W.D. and Oswald, I., 2016. Microbial biotransformation of DON: molecular basis for reduced toxicity. Scientific Reports 6: 29105.https://doi.org/10.1038/srep29105
Pinelli, E., Poux, N., Garren, L., Pipy, B., Castegnaro, M., Miller, D.J. and Pfohl-Leszkowicz, A., 1999. Activation of mitogen-activated protein kinase by fumonisin B1 stimulates cPLA(2) phosphorylation, the arachidonic acid cascade and cAMP production. Carcinogenesis 20: 1683-1688.https://doi.org/10.1093/carcin/20.9.1683
Pinton, P. and Oswald, I.P., 2014. Effect of deoxynivalenol and other type B trichothecenes on the intestine: a review. Toxins 6: 1615-1643.https://doi.org/10.3390/toxins6051615
Pinton, P., Braicu, C., Nougayrede, J.P., Laffitte, J., Taranu, I. and Oswald, I.P., 2010. Deoxynivalenol impairs porcine intestinal barrier function and decreases the protein expression of claudin-4 through a mitogen activated protein kinase dependent mechanism. Journal of Nutrition 140: 1956-1962.https://doi.org/10.3945/jn.110.123919
Prelusky, D.B., Hartin, K.E., Trenholm, H.L. and Miller, J.D., 1988. Pharmacokinetic fate of 14C-labeled deoxynivalenol in swine. Fundamental and Applied Toxicology 10: 276-286.https://doi.org/10.1016/0272-0590(88)90312-0
Rizzo, A., Pallone, F., Monteleone, G. and Fantini, M.C., 2011. Intestinal inflammation and colorectal cancer: a double-edged sword? World Journal of Gastroenterology 17: 3092-3100.https://doi.org/10.3748/wjg.v17.i26.3092
Royaee, A.R., Husmann, R.J., Dawson, H.D., Calzada-Nova, G., Schnitzlein, W.M., Zuckermann, F.A. and Lunney, J.K., 2004. Deciphering the involvement of innate immune factors in the development of the host response to PRRSV vaccination. Veterinary Immunology and Immunopathology 102: 199-216.https://doi.org/10.1016/j.vetimm.2004.09.018
Sasaki, Y., Tanaka, M. and Kudo, H., 2002. Differentiation between ulcerative colitis and Crohn’s disease by a quantitative immunohistochemical evaluation of T lymphocytes neutrophils, histiocytes and mast cells. Pathology International 52: 277-285.https://doi.org/10.1046/j.1440-1827.2002.01354.x
Schlemmer, U., Jany, K.D., Berk, A., Schulz, E. and Rechkemmer, G., 2001. Degradation of phytate in the gut of pigs-pathway of gastro-intestinal inositol phosphate hydrolysis and enzymes involved. Archiv für Tierernaehrung 55: 255-280.https://doi.org/10.1080/17450390109386197
Schroterová, L., Hakowá, P., Rudolf, E. and Cervinka, M., 2010. Effect of phytic acid and inositol on the proliferation and apoptosis of cells derived from colorectal carcinoma. Oncology Reports 23: 787-793.https://doi.org/10.3892/or_00000699
Sekita, A., Okazaki, Y. and Katayama, T., 2016. Dietary phytic acid prevents fatty liver by reducing expression of hepatic lipogenic enzymes and modulates gut microflora in rats fed a high sucrose-diet. Nutrition 32: 720-722.https://doi.org/10.1016/j.nut.2016.01.003
Selsted, M.E., Millers, I.S., Henschen, A.H. and Quellette, A.J., 1992. Enteric defensins: antibiotic peptide components of intestinal host defense. Journal of Cell Biology 118: 929-936.https://doi.org/10.1083/jcb.118.4.929
Silva, E.O. and Bracarense, A.P.F.R.L., 2016. Phytic acid: from antinutritional to multiple protection factor of organic systems. Journal of Food Science 81: 1357-1362.https://doi.org/10.1111/1750-3841.13320
Silva, E.O., Gerez, J.R., Drape, T.C. and Bracarense, A.P.F.R.L., 2014. Phytic acid decreases deoxynivalenol and fumonisin B1-induced changes on swine jejunal explants. Toxicology Reports 1: 284-292.https://doi.org/10.1016/j.toxrep.2014.05.001
Silva, E.O., Gerez, J.R., Hohmann, M.S.N., Verri Jr, W.A. and Bracarense, A.P.F.R.L., 2019. Phytic acid decreases oxidative stress and intestinal lesions induced by fumonisin B1 and deoxynivalenol in intestinal explants of pigs. Toxins 11: 11010018.https://doi.org/10.3390/toxins11010018
Soriano, J.M., González, L. and Catalá, A., 2005. Mechanism of action of sphingolipids and their metabolites in the toxicity of fumonisin B1. Progress in Lipid Research 44: 345-356.https://doi.org/10.1016/j.plipres.2005.09.001
Stadnyk, A.W., 2002. Intestinal epithelial cell as a source of inflammatory cytokines and chemokines. Canadian Journal of Gastroenterology and Hepatology 16: 241-246.https://doi.org/10.1155/2002/941087
Streit, E., Naehrer, K., Rodrigues, I. and Schatzmayr, G., 2013. Mycotoxin occurrence in feed and feed raw materials worldwide: long-term analysis with special focus on Europe and Asia. Journal of the Science of Food and Agriculture 93: 2892-2899.https://doi.org/10.1002/jsfa.6225
Szkaradkiewicz, A., Marciniak, R., Chudzicka-Strugala, I., Wasileska, A., Drews, M., Majewski, P., Karpiński, T. and Zwoździak, B., 2009. Proinflammatory cytokines and IL-10 in inflammatory bowel disease and colorectal cancer patients. Archivum Immunologiae et Therapiae Experimentalis 57: 291-294.https://doi.org/10.1007/s00005-009-0031-z
Tantivejkul, K., Vucenik, I. and Shamsuddin, A.M., 2003. Inositol hexphosphate (IP6) inhibits key events of cancer metastasis: I.In vitro studies of adhesion, migration and invasion of MDA-MB 231 human breast cancer cells. Anticancer Research 23: 671-679.
'Inositol hexphosphate (IP6) inhibits key events of cancer metastasis: I.In vitro studies of adhesion, migration and invasion of MDA-MB 231 human breast cancer cells ' () 23 Anticancer Research : 671 -679.
Veldhuizen, E.J.A., Koomen, I., Ultee, T., Van Dijk, A. and Haagsman, H.P., 2009.Salmonella serovar specific upregulation of porcine defensins 1 and 2 in a jejunal epithelial cell line. Veterinary Microbiology 136: 69-75.https://doi.org/10.1016/j.vetmic.2008.09.072
Vucenik, I. and Shamsuddin, A.M., 2006. Protection against cancer by dietary IP6 and inositol. Nutrition and Cancer 55: 109-125.https://doi.org/10.1207/s15327914nc5502_1
Wan, M.L.-Y., Woo, C.-S.J., Allen, K.J., Turner, P.C. and El-Nezami, H., 2013. Modulation of porcine β-defensins 1 and 2 upon individual and combinedFusarium toxin exposure in a swine jejunal epithelial cell line. Applied and Environmental Microbiology 79: 2225-2232.https://doi.org/10.1128/AEM.03277-12
Wang, S., Yang, Y., Zhang, B., Wu, K., Yang, A., Li, C., Zhang, J., Zhang, C., Rajput, S.A., Zhang, N., Sun, L. and Qi, D., 2018. Deoxynivalenol impairs porcine intestinal host defense peptide expression in weaned piglets and IPEC-J2 cells. Toxins 10: 10120541.https://doi.org/10.3390/toxins10120541
Wang, S., Zhang, C., Yang, J., Wang, X., Wu, K., Zhang, B., Zhang, J., Yang, A., Rajput, S.A. and Qi, D., 2020. Sodium butyrate protects the intestinal barrier by modulating intestinal host defense peptide expression and gut microbiota after a challenge with deoxynivalenol in weaned piglets. Journal of Agricultural and Food Chemistry 68: 4515-4527.https://doi.org/10.1021/acs.jafc.0c00791
Wawszczyk, J., Orchel, A., Kapral, M., Holler, A. and Weglarz, L., 2012a. The effect of phytic acid on the expression of NF-κB, IL-6 and IL-8 in IL-1β-stimulated human colonic epithelial cells. Acta Poloniae Pharmaceutica – Drug Research 69: 1313-1319.
'The effect of phytic acid on the expression of NF-κB, IL-6 and IL-8 in IL-1β-stimulated human colonic epithelial cells ' () 69 Acta Poloniae Pharmaceutica – Drug Research : 1313 -1319.
Wawszczyk, J., Orchel, A., Kapral, M., Holler, A. and Weglarz, L., 2012b. Phytic acid down-regulates IL-8 secretion from colonic epithelial cells by influencing mitogen-activated protein-kinase signaling pathway. Acta Poloniae Pharmaceutica – Drug Research 69: 1276-1282.
'Phytic acid down-regulates IL-8 secretion from colonic epithelial cells by influencing mitogen-activated protein-kinase signaling pathway ' () 69 Acta Poloniae Pharmaceutica – Drug Research : 1276 -1282.
Yang, D., Biragyn, A., Kwak, L.W. and Oppenheim, J.J., 2002. Mammalian defensins in immunity: more than just microbicidal. Trends in Immunology 23: 39-48.https://doi.org/10.1016/S1471-4906(02)02246-9
Zhang, L.Y., Hou, L., Zhang, L., Zhang, J., Wang, Y., Liu, C., Xu, P., Liu, L., Gai, X. and Lu, T., 2015. Phytic acid attenuates inflammatory responses and the levels of NF-κB and p-ERK in MPTP-induced Parkinson’s disease model of mice. Neuroscience Letters 597: 132-136.https://doi.org/10.1016/j.neulet.2015.04.040
Zilbauer, M., Dorrell, N., Boughan, P.K., Harris, A., Wren, B.W. and Bajaj-Elliott, M., 2005. Intestinal innate immunity toCampylobacter jejuni results in induction of bactericidal human beta-defensins 2 and 3. Infection and Immunity 73: 7281-7289.https://doi.org/10.1128/IAI.73.11.7281-7289.2005
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 73 | 53 | 11 |
Full Text Views | 19 | 1 | 0 |
PDF Views & Downloads | 10 | 3 | 0 |
Occurrence of mycotoxins in agricultural products represents a risk for human and animal health. Therefore, there is a requirement of strategies to mitigate their harmful impacts. This study investigated the effects of phytic acid (IP6) on the immunological response of pro-(interleukin (IL)-1β, IL-6, IL-8, IL-10, interferon (IFN)-γ, tumour necrosis factor (TNF)-α) and anti-inflammatory (IL-10) cytokines and β-defensins 1 (pBD-1) and 2 (pBD-2) in porcine jejunal explants exposed to deoxynivalenol (DON) and fumonisin B1 (FB1). The explants were exposed to the following treatments: control, DON (10 μM), DON plus IP6 2.5 mM or 5 mM, FB1 (70 μM), FB1 IP6 plus 2.5 or 5 mM. The expression levels of the cytokines were measured by RT-qPCR. The exposure to FB1 and DON induced intestinal lesions. The presence of 2.5 and 5 mM IP6 inhibited the morphological changes induced by the mycotoxins. The explants exposed to DON showed an increase in the expression of IL-1β and IL-8 and a decrease in the levels of IL-6, IFN-γ, IL-10 and pBD-2. IP6 (5 mM) decreased the expression of IL-8 and increased the expression in pBD-1 and 2 compared to DON alone. FB1 induced a significant decrease in the levels of most of the pro-inflammatory cytokines, IL-10 and pBD-1, and an increase in IL-1β expression. The addition of IP6 5 mM induced significant increase in TNF-α expression compared to FB1. Taken together, the results suggest IP6 modulates immunological changes induced by DON and FB1 on intestinal mucosa resulting in beneficial effects that contribute to intestinal homeostasis and health.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 73 | 53 | 11 |
Full Text Views | 19 | 1 | 0 |
PDF Views & Downloads | 10 | 3 | 0 |