Patulin (PAT) is a mycotoxin, a secondary metabolite mainly produced by fungi of the generaAspergillus, Byssochlamys, andPenicillium. Many studies have looked into the potential impacts of this mycotoxin due to its high risk. Researchers are currently doing a more in-depth investigation of and employing physical, chemical, and biological ways to remove PAT. However, existing technology cannot completely remove it, and the residual PAT will continue to pose a threat to human health. As a result, substances capable of reducing PAT toxicity need be discovered. According to previous studies, natural components in food could reduce the toxicity of PAT. This article will review the different types of active compounds and discus the detoxification processes, as well as give recommendations for decreasing the toxicity of PAT and future research directions.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Abraham, S.K., Eckhardt., A., Oli., R.G. and Stopper., H., 2012. Analysis ofin vitro chemoprevention of genotoxic damage by phytochemicals, as single agents or as combinations. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 744: 117-124.https://doi.org/10.1016/j.mrgentox.2012.01.011
Acharya, U.R., Mishra, M., Mishra, I. and Tripathy, R.R., 2004. Potential role of vitamins in chromium induced spermatogenesis in Swiss mice. Environmental Toxicology and Pharmacology 15: 53-59.https://doi.org/10.1016/j.etap.2003.08.010
Alves, I., Oliveira, N.G., Laires, A., Rodrigues, A.S. and Rueff, J., 2000. Induction of micronuclei and chromosomal aberrations by the mycotoxin patulin in mammalian cells: role of ascorbic acid as a modulator of patulin clastogenicity. Mutagenesis 15: 229-234.https://doi.org/10.1093/mutage/15.3.229
Ayed-Boussema, I., Abassi, H., Bouaziz, C., Hlima, W.B., Ayed, Y. and Bacha, H., 2013. Antioxidative and antigenotoxic effect of vitamin E against patulin cytotoxicity and genotoxicity in HepG2 cells. Environmental Toxicology 28: 299-306.
Boots, A.W., Haenen, G.R.M.M. and Bast, A., 2008. Health effects of quercetin: from antioxidant to nutraceutical. European Journal of Pharmacology 585: 325-337.https://doi.org/10.1016/j.ejphar.2008.03.008
Boussabbeh, M., Ben Salem, I., Prola, A., Guilbert, A., Bacha, H., Abid-Essefi, S. and Lemaire, C., 2015. Patulin induces apoptosis through ROS-mediated endoplasmic reticulum stress pathway. Toxicological Sciences 144: 328-337.https://doi.org/10.1093/toxsci/kfu319
Boussabbeh, M., Prola, A., Salem, I.B., Guilbert, A., Bacha, H., Lemaire, C. and Abis-Essefi, S., 2016a. Crocin and quercetin prevent PAT-induced apoptosis in mammalian cells: involvement of ROSmediated ER stress pathway. Environmental Toxicology 31: 1851-1858.https://doi.org/10.1002/tox.22185
Boussabbeh, M., Salem, I.B., Belguesmi, F., Neffati, F., Najjar, M.F., Abid-Essefi, S. and Bacha, H., 2016b. Crocin protects the liver and kidney from patulin-induced apoptosisin vivo. Environmental Science Pollution Research 23: 9799-9808.https://doi.org/10.1007/s11356-016-6195-2
Busbee, D., Barhoumi, R., Burghardt, R.C., Gauntt, C., Mcanalley, B. and Mcdaniel, H.R., 1999. Protection from glutathione depletion by a glyconutritional mixture of saccharides. Journal of the American Aging Association 22: 159-165.https://doi.org/10.1007/s11357-999-0018-z
Chevalier, B., Anglade, P., Derouet, M., Mollé, D. and Simon, J., 2016. Characterization ofin vitro effects of patulin on intestinal epithelial and immune cells. Toxicology Letters 250-251: 47-56.https://doi.org/10.1016/j.toxlet.2016.04.007
Conde, E., Moure, A., Domínguez, H. and Parajó], J., 2013. Characterization, refining and antioxidant activity of saccharides derived from hemicelluloses of wood and rice husks. Food Chemistry 141: 495-502.https://doi.org/10.1016/j.foodchem.2013.03.008
Diao, E., Hou, H., Hu, W., Dong, H. and Li, X., 2018. Removing and detoxifying methods of patulin: a review. Trends in Food Science and Technology 81: 139-145.https://doi.org/10.1016/j.tifs.2018.09.016
Diomede, F., 2021. Antioxidant ascorbic acid modulates NLRP3 inflammasome in LPS-G treated oral stem cells through NFκB/Caspase-1/IL-1ß pathway. Antioxidants 10: 797.https://doi.org/10.3390/antiox10050797
Elbakry, K., Deef, L., Habbak, L.Z. and El-Naeli, S.S., 2020. Hepatorenal toxicity of patulin and its modulation by ginger (Zingiber officinale) in rats. Pakistan Journal of Zoology 52: 679-685.https://doi.org/10.17582/journal.pjz/20190517160536
Ferenczyova, K., Kalocayova, B. and Bartekova, M., 2020. Potential Implications of Quercetin and its Derivatives in Cardioprotection. International Journal of Molecular Sciences 21: 1585.https://doi.org/10.3390/ijms21051585.
Ganjiani, V., Ahmadi, N., Divar, M.R., Sharifiyazdi, H. and Meimandi-Parizi, A., 2021. Protective effects of crocin on testicular torsion/detorsion in rats. Theriogenology 173: 241-248.https://doi.org/10.1016/j.theriogenology.2021.07.021
García-Rodríguez, M.d.C., Nicolás-Méndez, T., Montao-Rodríguez, A.R. and Altamirano-Lozano, M.A., 2014. Antigenotoxic effects of (–)-epigallocatechin-3-gallate (EGCG), quercetin, and rutin on chromium trioxide-induced micronuclei in the polychromatic erythrocytes of mouse peripheral blood. Journal of Toxicology and Environmental Health Part A 77: 324-336.https://doi.org/10.1080/15287394.2013.865006
Haniadka, R., Saxena, A., Shivashankara, A.R., Fayad, R., Palatty, P.L., Nazreth, N., Francis, A., Arora, R. and Baliga, M.S., 2013. Ginger protects the liver against the toxic effects of xenobiotic compounds: preclinical observations. Journal of Nutrition and Food Sciences 3: 1000226.https://doi.org/10.4172/2155-9600.1000226
Haripaul, S., Rajnee, K., Natarajan, B., Sanjay, G. and Pratap, S.R., 2014. Plant flavone apigenin binds to nucleic acid bases and reduces oxidative dna damage in prostate epithelial cells. PLoS One 9: e91588.https://doi.org/10.1371/journal.pone.0091588
Hayes, A.W., Phillips, T.D., Williams, W.L. and Ciegler, A., 1979. Acute toxicity of patulin in mice and rats. Toxicology 13: 91-100.https://doi.org/10.1016/S0300-483X(79)80014-1
Hu, X.T., Ding, C., Zhou, N. and Xu, C., 2015. Quercetin protects gastric epithelial cell from oxidative damagein vitro andin vivo. European Journal of Pharmacology 754: 115-124.https://doi.org/10.1016/j.ejphar.2015.02.007
Imen, A.-B., Haila, A., Chayma, B., Ben, H.W., Yosra, A. and Hassen, B., 2013. Antioxidative and antigenotoxic effect of vitamin E against patulin cytotoxicity and genotoxicity in HepG2 cells. Environmental Toxicology 28: 299-306.https://doi.org/10.1002/tox.20720
Jayashree, G.V., Krupashree, K., Rachitha, P. and Khanum, F., 2017. Patulin induced oxidative stress mediated apoptotic damage in mice, and its modulation by green tea leaves. Journal of Clinical and Experimental Hepatology 7: 127-134.
Jiang, S.A., Sg, B., Jm, C., Wma, D., Qp, A., Ysa, D., Qi, X.C., Zhi, L.A. and Hl, A., 2021. Insight into the pigmented anthocyanins and the major potential co-pigmented flavonoids in purple-coloured leaf teas. Food Chemistry 22: 153-163.
Jin, H., Yin, S., Song, X., Zhang, E., Fa N, L. and Hu, H., 2016. p53 activation contributes to patulin-induced nephrotoxicity via modulation of reactive oxygen species generation. Scientific Reports 6: 24455.https://doi.org/10.1038/srep24455
Jung, W.-W., 2014. Protective effect of apigenin against oxidative stress-induced damage in osteoblastic cells. International Journal of Molecular Medicine 33: 1327-1334.https://doi.org/10.3892/ijmm.2014.1666
Kähkönen, M.P., Hopia, A.I., Vuorela, H.J., Rauha, J.P., Pihlaja, K., Kujala, T.S. and Heinonen, M., 1999. Antioxidant activity of plant extracts containing phenolic compounds. Journal of Agricultural and Food Chemistry 47: 3954-3962.https://doi.org/10.1021/jf990146l
Kieliszek, M. and Blazejak, S., 2013. Selenium: significance, and outlook for supplementation. Nutrition 29: 713-718.https://doi.org/10.1016/j.nut.2012.11.012
Krinsky, N.I., 1989. Antioxidant functions of carotenoids. Free Radical Biology and Medicine 7: 617-635.https://doi.org/10.1016/0891-5849(89)90143-3
Lefort, E.C. and Blay, J., 2013. Apigenin and its impact on gastrointestinal cancers. Molecular Nutrition and Food Research 57: 126-144.https://doi.org/10.1002/mnfr.201200424
Liu, R.T., Walsh, R. and Sheehan, A.E., 2019. Prebiotics and probiotics for depression and anxiety: A systematic review and meta-analysis of controlled clinical trials. Neuroscience and Biobehavioral Reviews 102: 13-23.https://doi.org/10.1016/j.neubiorev.2019.03.023
Lu, X., Zhang, E., Yin, S., Fan, L. and Hu, H., 2017. Methylseleninic acid prevents patulin-induced hepatotoxicity and nephrotoxicity via inhibition of oxidative stress and inactivation of p53 and MAPKs. Journal of Agricultural and Food Chemistry 65: 5299-5305.https://doi.org/10.1021/acs.jafc.7b01338
Luca, V.S., Miron, A. and Aprotosoaie, A.C., 2016. The antigenotoxic potential of dietary flavonoids. Phytochemistry Reviews 15: 591-625.https://doi.org/10.1007/s11101-016-9457-1
Matthiaschk, G. and Korte, A., 1986. Studies on the embryotoxicity and mutagenicity of mycotoxins. Mycotoxin Research 2: 89.https://doi.org/10.1007/BF03191969
Maxwell, S.R.J., 1995. Prospects for the use of antioxidant therapies. Drugs 49: 345-361.https://doi.org/10.2165/00003495-199549030-00003
Morales-Soto, A., García-Salas, P., Rodríguez-Pérez, C., Jiménez-Sánchez, C., Cádiz-Gurrea, M.d.l.L., Segura-Carretero, A. and Fernández-Gutiérrez, A., 2014. Antioxidant capacity of 44 cultivars of fruits and vegetables grown in Andalusia (Spain). Food Research International 58: 35-46.https://doi.org/10.1016/j.foodres.2014.01.050
Njus, D., Kelley, P.M., Tu, Y.J. and Schlegel, H.B., 2020. Ascorbic acid: the chemistry underlying its antioxidant properties. Free Radical Biology and Medicine 159: 37-43.https://doi.org/10.1016/j.freeradbiomed.2020.07.013
Pattono, D., Grosso, A., Stocco, P.P., Pazzi, M. and Zeppa, G., 2013. Survey of the presence of patulin and ochratoxin A in traditional semi-hard cheeses. Food Control 33: 54-57.https://doi.org/10.1016/j.foodcont.2013.02.019
Pfeiffer, E., Gross, K. and Metzler, M., 1998. Aneuploidogenic and clastogenic potential of the mycotoxins citrinin and patulin. Carcinogenesis 19: 1313.
Preetha Rani, M.R., Salin Raj, P., Nair, A., Ranjith, S., Rajankutty, K. and Raghu, K.G., 2022.In vitro andin vivo studies reveal the beneficial effects of chlorogenic acid against ER stress mediated ER-phagy and associated apoptosis in the heart of diabetic rat. Chemico-Biological Interactions 351: 109755.https://doi.org/10.1016/j.cbi.2021.109755
Quesada, I.M., Bustos, M., Blay, M., Pujadas, G., Ardèvol, A., Salvadó, M.J., Bladé, C., Arola, L. and Fernández-Larrea, J., 2011. Dietary catechins and procyanidins modulate zinc homeostasis in human HepG2 cells. Journal of Nutritional Biochemistry 22: 153-163.https://doi.org/10.1016/j.jnutbio.2009.12.009
Ramalingam, S., Bahuguna, A. and Kim, M., 2019. The effects of mycotoxin patulin on cells and cellular components Trends in Food Science and Technology 83: 99-113.https://doi.org/10.1016/j.tifs.2018.10.010
Renzhi, L., Yifei, D., Zhijie, B., Simin, Z., Songyi, L. and Na, S., 2022. Advances in the activity evaluation and cellular regulation pathways of food-derived antioxidant peptides. Trends in Food Science and Technology 122: 171-186.https://doi.org/10.1016/J.TIFS.2022.02.026
Saeed, M., Efferth, T., Kadioglu, O., Khalid, H. and Sugimoto, Y., 2015. Activity of the dietary flavonoid, apigenin, against multidrug resistant tumor cells as determined by pharmacogenomics and molecular docking. Journal for Immunotherapy of Cancer 26: 44-56.https://doi.org/10.1016/j.jnutbio.2014.09.008
Schumacher, D.M., Metzler, M. and Lehmann, L., 2005. Mutagenicity of the mycotoxin patulin in cultured Chinese hamster V79 cells, and its modulation by intracellular glutathione. Archives in Toxicology 79: 110-121.https://doi.org/10.1007/s00204-004-0612-x
Shahidi, F., Pinaffi-Langley, A.C.C., Fuentes, J., Speisky, H. and de Camargo, A.C., 2021. Vitamin E as an essential micronutrient for human health: Common, novel, and unexplored dietary sources. Free Radical Biology and Medicine 176: 312-321.https://doi.org/10.1016/j.freeradbiomed.2021.09.025
Song, E., Su, C., Fu, J., Xia, X., Yang, S., Xiao, C., Lu, B., Chen, H., Sun, Z. and Wu, S., 2014a. Selenium supplementation shows protective effects against patulin-induced brain damage in mice via increases in GSH-related enzyme activity and expression. Life Sciences 109: 37-43.https://doi.org/10.1016/j.lfs.2014.05.022
Song, E., Xia, X., Su, C., Dong, W., Xian, Y., Wang, W. and Song, Y., 2014b. Hepatotoxicity and genotoxicity of patulin in mice, and its modulation by green tea polyphenols administration. Food Chemical Toxicology 71: 122-127.https://doi.org/10.1016/j.fct.2014.06.009
Sung, B., Chung, H.Y. and Kim, N.D., 2016. Role of apigenin in cancer prevention via the induction of apoptosis and autophagy. Journal of Cancer Prevention 21: 216-226.https://doi.org/10.15430/JCP.2016.21.4.216
Surai, P.F. and Kochish, I.I., 2018. Nutritional modulation of the antioxidant capacities in poultry: the case of selenium. Poultry Science 98: 4231-4239.https://doi.org/10.3382/ps/pey406
Suzuki, T. and Iwahashi, Y., 2011. Gene expression profiles of yeastSaccharomyces cerevisiae sod1 caused by patulin toxicity and evaluation of recovery potential of ascorbic acid. Journal of Agricultural and Food Chemistry 59: 7145-7154.https://doi.org/10.1021/jf104938p
Suzuki, T., Sirisattha, S., Mori, K. and Iwahashi, Y., 2009. Mycotoxin toxicity inSaccharomyces cerevisiae differs depending on gene mutations. Food Science and Technology Research 15: 453.https://doi.org/10.3136/fstr.15.453
Tokarova, K., Vasicek, J., Jurcik, R., Balazi, A., Kovacikova, E., Kovacik, A., Chrenek, P. and Capcarova, M., 2019. Low dose exposure of patulin and protective effect of epicatechin on blood cellsin vitro. Journal of Environmental Science and Health, Part B 54: 459-466.https://doi.org/10.1080/03601234.2019.1575673
Tokarova, K., Vasicek, J., Jurcik, R., Balazi, A., Kovacikova, E., Kovacik, A., Chrenek, P. and Capcarova, M., 2019. Low dose exposure of patulin and protective effect of epicatechin on blood cellsin vitro. Environmental Science and Health part B 54: 459-466.https://doi.org/10.1080/03601234.2019.1575673
Tosovic, J., Markovic, S., Markovic, J.M.D., Mojovic, M. and Milenkovic, D., 2017. Antioxidative mechanisms in chlorogenic acid. Food Chemistry 237: 390.
Ugur, H., Çatak, J., Mizrak, Ö.F., Çebi, N. and Yaman, M., 2020. Determination and evaluation ofin vitro bioaccessibility of added vitamin C in commercially available fruit-, vegetable-, and cereal-based baby foods. Food Chemistry 330: 127166.https://doi.org/10.1016/j.foodchem.2020.127166
Wang, C.N., Chi, C.W., Lin, Y.L., Chen, C.F. and Shiao, Y.J., 2001. The neuroprotective effects of phytoestrogens on amyloid beta protein-induced toxicity are mediated by abrogating the activation of caspase cascade in rat cortical neurons. Journal of Biological Chemistry 276: 5287-5295.https://doi.org/10.1074/jbc.M006406200
Wang, H., Liu, Y.M., Qi, Z.M., Wang, S.Y., Liu, S.X., Li, X., Wang, H.J. and Xia, X.C., 2013. An Overview on Natural Polysaccharides with Antioxidant Properties. Current Medicinal Chemistry 20: 2899-2913.https://doi.org/10.2174/0929867311320230006.
Wei, C., Yu, L., Qiao, N., Zhao, J. and Chen, W., 2020. Progress in the distribution, toxicity, control, and detoxification of patulin: a review. Toxicon 184: 83-93.https://doi.org/10.1016/j.toxicon.2020.05.006
Xu, X., Huang, C., Xu, Z., Xu, H. and Yu, X., 2020. The strategies to reduce cost and improve productivity in DHA production byAurantiochytrium sp.: from biochemical to genetic respects. Applied Microbiology and Biotechnology 104: 1-15.https://doi.org/10.1007/s00253-020-10927-y
Yang, C.B., E;Adhikari, S; P.Kim, S. J;Kim, H;Yoon, H., 2019. Precise modeling of the protective effects of quercetin against mycotoxin via system identification with neural networks. International Journal of Molecular Sciences 20: 1725-1725.https://doi.org/10.3390/ijms20071725
Yang, G., Zhong, L., Jiang, L., Geng, C., Cao, J., Sun, X., Liu, X., Chen, M. and Ma, Y., 2011. 6-gingerol prevents patulin-induced genotoxicity in HepG2 cells. Phytotherapy Research 25: 1480-1485.https://doi.org/10.1002/ptr.3446
Yang, J., Wang, X.Y., Xue, J., Gu, Z.L. and Xie, M.L., 2013. Protective effect of apigenin on mouse acute liver injury induced by acetaminophen is associated with increment of hepatic glutathione reductase activity. Food and Function 4: 939-943.https://doi.org/10.1039/c3fo60071h
Yonekura-Sakakibara, K., Higashi, Y. and Nakabayashi, R., 2019. The origin and evolution of plant flavonoid metabolism. Frontiers in Plant Science 10: 943.https://doi.org/10.3389/fpls.2019.00943
Yu, Y., Shen, M., Song, Q. and Xie, J., 2018. Biological activities and pharmaceutical applications of polysaccharide from natural resources: a review. Carbohydrate Polymers 183: 91-101.https://doi.org/10.1016/j.carbpol.2017.12.009
Yue, Q., Xinlu, C., Zhangxi, C., Xuejun, Z., Tianli, Y. and Yahong, Y., 2022. Effects of selenium nanoparticles on preventing patulin-induced liver, kidney and gastrointestinal damage. Foods 11: 749-749.https://doi.org/10.3390/FOODS11050749
Zbynovska, K., Petruska, P., Kalafova, A., Ondruska, L., Jurcik, R., Chrastinova, L., Tusimova, E., Kovacik, A. and Capcarova, M., 2016. Antioxidant status of rabbits after treatment with epicatechin and patulin. Biologia 71: 835-842.https://doi.org/10.1515/biolog-2016-0098
Zhai, Q., Gong, X., Wang, C., Zhao, J., Zhang, H., Tian, F. and Chen, W., 2019. Food-borne patulin toxicity is related to gut barrier disruption and can be prevented by docosahexaenoic acid and probiotic supplementation. Food and Function 10: 1330-1339.https://doi.org/10.1039/c8fo02292e
Zhang, B., Peng, X., Li, G., Xu, Y., Xia, X. and Wang, Q., 2015. Oxidative stress is involved in patulin induced apoptosis in HEK293 cells. Toxicon 94: 1-7.https://doi.org/10.1016/j.toxicon.2014.12.002
Zhang, R., Chen, J., Jiang, X., Yin, L. and Zhang, X., 2016. Antioxidant and hypoglycaemic effects of tilapia skin collagen peptide in mice. International Journal of Food Science and Technology 51: 2157-2163.https://doi.org/10.1111/ijfs.13193
Zhong, L., Carere, J., Lu, Z., Lu, F. and Zhou, T., 2018. Patulin in apples and apple-based food products: the burdens and the mitigation strategies. Toxins 10: 475.https://doi.org/10.3390/toxins10110475
Zhong, Y., Jin, C., Gan, J., Wang, X., Shi, Z., Xia, X. and Peng, X., 2017. Apigenin attenuates patulin-induced apoptosis in HEK293 cells by modulating ROS-mediated mitochondrial dysfunction and caspase signal pathway. Toxicon 137: 106-113.https://doi.org/10.1016/j.toxicon.2017.07.018
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 126 | 86 | 7 |
Full Text Views | 60 | 6 | 0 |
PDF Views & Downloads | 56 | 15 | 0 |
Patulin (PAT) is a mycotoxin, a secondary metabolite mainly produced by fungi of the generaAspergillus, Byssochlamys, andPenicillium. Many studies have looked into the potential impacts of this mycotoxin due to its high risk. Researchers are currently doing a more in-depth investigation of and employing physical, chemical, and biological ways to remove PAT. However, existing technology cannot completely remove it, and the residual PAT will continue to pose a threat to human health. As a result, substances capable of reducing PAT toxicity need be discovered. According to previous studies, natural components in food could reduce the toxicity of PAT. This article will review the different types of active compounds and discus the detoxification processes, as well as give recommendations for decreasing the toxicity of PAT and future research directions.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 126 | 86 | 7 |
Full Text Views | 60 | 6 | 0 |
PDF Views & Downloads | 56 | 15 | 0 |