Browse results

Taeman Han, Seung-Hyun Kim, Hyung Joo Yoon, In Gyun Park and Haechul Park

The firefly subgenus Hotaria sensu lato of the genus Luciola currently includes four morphospecies: L. (H.) parvula, L. (H.) unmunsana, L (H.) papariensis, and L. (H.) tsushimana. The latter three are taxonomically controversial based on both morphological and molecular data. We examined the phylogenetic relationships and evolutionary history of the species and related congeners using partial COI gene sequences (DNA barcoding). Our phylogenetic analyses consistently supported the monophyly of Hotaria sensu lato, but did not resolve the generic rank. The two types of L. (H.) parvula in Japan can be considered distinct species that arose by pseudocryptic speciation during the Miocene, with substantial genetic divergence (15.41%). Three morphospecies, L. (H.) unmunsana, L (H.) papariensis, and L. (H.) tsushimana, split into several polyphyletic or paraphyletic groups, forming entangled species groups. They are considered an incipient group that is distinguishable genetically but not morphologically, with evidence for recent allopatric speciation events corresponding to geologic events and sea-level changes during the Pliocene and Pleistocene. Group III of L. (H.) unmunsana collected from the Jeolla region is a new taxon.

Laura Likov, Ante Vujić, Nataša Kočiš Tubić, Mihajla Đan, Nevena Veličković, Santos Rojo, Celeste Pérez-Bañón, Sanja Veselić, Anatolij Barkalov, Rüstem Hayat and Snežana Radenković

The putative monophyly and systematic position of Merodon nigritarsis group was assessed based on morphological and molecular data of the mitochondrial COI and nuclear 28S rRNA genes. The previously reported concept of the group has been redefined, and M. crassifemoris Paramonov, 1925 is now excluded. The related M. avidus group is redefined here, including the Merodon avidus complex and M. femoratus Sack, 1913. Species delimitation of morphologically defined species of M. nigritarsis group was well supported by COI gene analysis, with the exception of M. alagoezicus Paramonov, 1925 and M. lucasi Hurkmans, 1993. Descriptions are given for three new species of the M. nigritarsis species group: Merodon cohurnus Vujić, Likov et Radenković sp. n., Merodon longisetus Vujić, Radenković et Likov sp. n. and Merodon obstipus Vujić, Radenković et Likov sp. n., and one new species from the M. avidus group: Merodon rutitarsis Likov, Vujić et Radenković sp. n. A lectotype is designated for M. femoratus Sack, 1913, and two new synonymies of this species were proposed: M. biarcuatus Curran, 1939 and M. elegans Hurkmans, 1993. Here we review 18 species from the M. nigritarsis group and six species from the M. avidus group and provide morphological diagnoses of the species groups. Additionally, diagnosis of 12 branches (groups or individual taxa) of M. avidus-nigritarsis lineage, an illustrated diagnostic key for the males, and distribution map are provided for the new species.

Xin Tong and Bao-Zhen Hua

Neopanorpa, the second largest genus in Panorpidae, is mainly characterized by the well-developed notal organ on male tergum III. However, it remains largely unknown how the length of the notal organ influences the nuptial feeding behaviour of Neopanorpa. Here, we investigated the nuptial feeding by comparing the morphology of mating-related structures and the genital coupling of a) Neopanorpa lui Chou & Ran, 1981 with a weakly-developed notal organ, b) N. carpenteri Cheng, 1957 with a medium-sized notal organ, and c) N. longiprocessa Hua & Chou, 1997 with an extremely elongated notal organ. The couples of N. lui and N. carpenteri maintain an intermittent mouth-to-mouth mode but do not exchange any edible food. After that the males secrete a salivary mass onto the surface as a nuptial gift, which is distinctly larger in N. carpenteri than in N. lui. Correspondingly, the male salivary glands are more developed in N. carpenteri than in N. lui. Males of N. longiprocessa bear very short salivary glands corresponding to a coercive mating tactic. The genital couplings are similar among the three species of Neopanorpa. The paired hypovalves of males are used to control the cerci of females. The prominent basal processes of male gonostyli grasp the posterior portion of the female medigynium across the intersegmental membrane. The male aedeagus physically couples with the female medigynium to ensure the male phallotreme to connect to the female copulatory pore. The influence of the notal organ length on the nuptial feeding behaviour of Neopanorpa is briefly discussed.

Isabel T. Hyman and Frank Köhler

The helicarionid fauna of southeastern to mid-eastern Queensland is dominated by a group of semislugs with moderately reduced shells belonging to genera Fastosarion, Eungarion, Stanisicarion, Dimidarion, Macularion and Hymanarion. We comprehensively revise their systematic classification using comparative morpho-anatomy and mitochondrial phylogenetics, and demonstrate that these genera combined form a well-differentiated and monophyletic radiation. In our mitochondrial phylogeny, this radiation is divided into three main clades that are statistically well supported. One clade is also well defined in terms of diagnostic morpho-anatomical characters, but we could not identify diagnostic characters for the other two clades due to considerable levels of morpho-anatomical variation. We propose accepting only two genera, Fastosarion (with junior synonyms Eungarion, Dimidarion, and Hymanarion) and Stanisicarion (with junior synonym Macularion). Both genera represent mutually monophleytic sister taxa that can consistently be distinguished by the presence or absence of a penial verge that is fused to the penial wall and by egg shape. We also synonymise Fastosarion ameyi with F. aquavitae, F. schelli with F. helenkingae, Dimidarion peterbrocki and D. slatyeri with F. alyssa, Stanisicarion virens with S. freycineti. Revised species descriptions are presented for Fastosarion alyssa, F. aquavitae, F. brazieri, F. comerfordae, F. griseolus, F. hannianus, F. helenkingae, F. mcdonaldi, F. minerva, F. paluma, F. papillosus, F. pustulosus, F. superbus, Stanisicarion aquila and S. freycineti. Nine new species, Fastosarion deensis, F. ephelis, F. insularis, F. katatonos, F. longimentula, F. rowani, F. sarina, F. tuljun and Stanisicarion wolvi are described, bringing the total number of accepted species to 24.

Somayeh Esmaeili-Rineh, Mahmoud Mamaghani-Shishvan, Cene Fišer, Vahid Akmali and Nargess Najafi

The connectivity of groundwater aquifers is lower compared to surface waters. Consequently, groundwater species are expected to have smaller distributional ranges than their surface relatives. Molecular taxonomy, however, unveiled that many species comprise complexes of morphologically cryptic species, with geographically restricted distributional ranges in subterranean as well as in surface waters. Hence, the range sizes of surface and groundwater species might be more similar in size than hitherto thought. We tested this hypothesis by comparing the range size of surface amphipods of the genus Gammarus and subterranean amphipods of the genus Niphargus in Iran. We re-analyzed the taxonomic structure of both genera using two unilocus species delimitation methods applied to a fragment of the COI mitochondrial marker, to identify molecular operational taxonomic units (MOTUs), and assessed the maximum linear extent (MLE) of the ranges of MOTUs from both genera. Genus Gammarus comprised 44–58 MOTUs while genus Niphargus comprised 20–22 MOTUs. The MLEs of the two genera were not significantly different, regardless the delimitation method applied. The results remained unchanged also after exclusion of single site MOTUs. We tentatively conclude that in this case there is no evidence to consider that groundwater species are geographically more restricted than surface species.

Giulia Perina, Ana I. Camacho, Joel Huey, Pierre Horwitz and Annette Koenders

The stygofaunal family of Bathynellidae, is an excellent group to study the processes that shape diversity and distribution, since they have unknown surface or marine relatives, high level of endemism, and limited dispersal abilities. Recent research on Bathynellidae in Western Australia (Pilbara) has uncovered new taxa with unexpected distributions and phylogenetic relationships, but the biogeographical processes that drive their diversification on the continent are still unclear. By exploring the diversity, distribution, and divergence time of Bathynellidae in a setting such as the perched and isolated aquifers of the Cleaverville Formation in the north of the De Grey River catchment (Pilbara), we aim to test the hypothesis that vicariance has shaped the distribution of this family, specifically if one or multiple vicariant events were involved. We analysed the specimens collected from perched water in different plateaus of the Cleaverville Formation, combining morphological and molecular data from mitochondrial and nuclear genes. We described two new species and genera (Anguillanella callawaensis gen. et sp. nov. and Muccanella cundalinensis gen. et sp. nov.), and two additional taxa are recognised using morphology and/or Automatic Barcode Gap Discovery and Poisson Tree Processes species delimitation methods. New genera and species result restricted to isolate perched aquifers on single plateaus and their distributions, phylogenetic relationships, and divergence time estimates support multiple vicariant events and ancient allopatric speciation.

Javier H. Santos-Santos, Mireia Guinovart-Castán and David R. Vieites

Mantellid frogs present an extensive adaptive radiation endemic to Madagascar and Comoros, being the subfamily Mantellinae the most morphologically and ecologically diverse. The Mantellinae present key innovative evolutionary traits linked to their unique reproductive behavior, including the presence of femoral glands and a derived vomeronasal organ. In addition, previous studies pointed to size differentiation in playing an important role in species’ dispersal capacities and shaping of their geographic ranges. Despite the high phenotypic variation observed in this clade, to date an exhaustive morphological analysis of their anatomy has still not been performed, much less in relation to internal structures. Here, we present a comprehensive skeletal description of a mantellid species, Blommersia transmarina, from the island of Mayotte in the Indian Ocean, which has potentially undergone a process of moderate gigantism compared to other Blommersia species. We describe its intraspecific skeletal variation utilizing non-destructive volume renderings from μCT-scans, and characterize the presence of sexual dimorphism and size covariation in skeletal structures. Notably, we found numerous signs of hyperossification, a novel structure for mantellids: the clavicular process, and the presence of several appendicular sesamoids. Our findings suggest that skeletal phenotypic variation in this genus may be linked to biomechanical function for reproduction and locomotion.

Maliheh Pirayesh Shirazinejad, Mansour Aliabadian and Omid Mirshamsi

The white wagtail (Motacilla alba) species complex with its distinctive plumage in separate geographical areas can serve as a model to test evolutionary hypotheses. Its extensive variety in plumage, despite the genetic similarity between taxa, and the evolutionary events connected to this variety are poorly understood. Therefore we sampled in the breeding range of the white wagtail: 338 individuals were analyzed from 74 areas in the Palearctic and Mediterranean. We studied the white wagtail complex based on two mitochondrial DNA markers to make inferences about the evolutionary history. Our phylogenetic trees highlight mtDNA sequences (ND2, CR), and one nuclear marker (CHD1Z), which partly correspond to earlier described clades: the northern Palearctic (clade N); eastern and central Asia (clade SE); south-western Asia west to the British Isles (clade SW); and Morocco (clade M). The divergence of all clades occurred during the Pleistocene. We also used ecological niche modelling for three genetic lineages (excluding clade M); results showed congruence between niche and phylogenetic divergence in these clades. The results of the white wagtail ancestral area reconstruction showed the influence of dispersal on the distribution and divergence of this complex species. The most important vicariance event for the white wagtail complex may have been caused by the Gobi and Taklamakan deserts. We conclude that the ancestral area of the white wagtail complex was probably in the Mediterranean, with its geography having a considerable effect on speciation processes.

Oksana A. Korzhavina, Bert W. Hoeksema and Viatcheslav N. Ivanenko

This review of copepod crustaceans associated with reef-dwelling cnidarians, sponges and echinoderms of the Greater Caribbean is based on published records, systematically arranged by the classification of symbiotic copepods and their hosts, sampling sites, coordinates, depth and date of sampling, literature sources, and three recent surveys (Cuba, St. Eustatius in the Eastern Caribbean and Curaçao in the Southern Caribbean). This resulted in totals of 532 records of 115 species of symbiotic copepods (47 genera, 17 families, three orders) hosted by 80 species of invertebrates, representing scleractinians (47%), octocorals (9%), echinoderms (3%), and sponges (1%). Among ten Caribbean ecoregions, the Greater Antilles (with 64 species of symbiotic copepods) as well as the Southern and Eastern Caribbean (with 46 and 17 species of copepods, respectively) are the most studied and best represented, whereas only six species of copepods are known from Bermuda, one from Southwestern Caribbean and none from the Gulf of Mexico. The absence of poecilostomatoid copepods (Anchimolgidae, Rhynchomolgidae and Xarifidae) on Caribbean stony corals as noted by Stock (1988) is confirmed. The results indicate that the diversity and ecology of Caribbean symbiotic copepods are still poorly investigated.

Tomáš Němec and Michal Horsák

Shell formation is the main defensive strategy against predation for the majority of snails. Therefore, various predators have had to develop a variety of techniques how to overcome this barrier. As shells can persist in a calcium-rich environment for a long time, specific external or internal traces on shells left by predators indicate whether and who killed the snail. Based on litter samples collected at 30 sites of five different habitat types, the intensity and type of predation were assessed. The minimal predation rate varied between 0.0 and 21%, with an average of 8%. The highest rate was observed at limestone steppes, on average 15%. Beetles were found to be the most common predators of snails; however, predation by snails was more common in calcareous fens. Predation by some vertebrates and dipteran flies was also recognised. To test the role of mouth barriers as a means to reduce predation by carabid beetles that break the shell from an aperture, we analysed the predation rate separately on adult and juvenile shells using 24 populations of the steppe snail Granaria frumentum (Draparnaud, 1801). As expected, carabid beetles chiefly preferred juveniles compared to adult shells (Wilcoxon test, p < 0.001). On the contrary, the parasitoid fly Pherbellia limbata (Meigen, 1830) and Drilus beetles preferred adults. We found that predation by carabid beetles positively increased with prey abundance (R2 = 42.8%, p = 0.021), while no relation was observed for the parasitoid (p = 0.703), likely due to their feeding specialisation.