Browse results

You are looking at 31 - 40 of 40 items for :

  • All accessible content x
  • Primary Language: English x
Clear All

Carolyn Brighouse, Jess Hartcher-O’Brien and Carmel A. Levitan

Seyed Ali Amirshahi, Gregor Uwe Hayn-Leichsenring, Joachim Denzler and Christoph Redies

The rule of thirds (ROT) is one of the best-known composition rules used in painting and photography. According to this rule, the focus point of an image should be placed along one of the third lines or on one of the four intersections of the third lines, to give aesthetically pleasing results. Recently, calculated saliency maps have been used in an attempt to predict whether or not images obey the rule of thirds. In the present study, we challenged this computer-based approach by comparing calculated ROT values with behavioral (subjective) ROT scores obtained from 30 participants in a psychological experiment. For photographs that did not follow the rule of thirds, subjective ROT scores matched calculated ROT values reasonably well. For photographs that followed the rule of thirds, we found a moderate correlation between subjective scores and calculated values. However, aesthetic rating scores correlated only weakly with subjective ROT scores and not at all with calculated ROT values. Moreover, for photographs that were rated as highly aesthetic and for a large set of paintings, calculated ROT values were about as low as in photographs that did not follow the rule of thirds. In conclusion, the computer-based ROT metrics can predict the behavioral data, but not completely. Despite its proclaimed importance in artistic composition, the rule of thirds seems to play only a minor, if any, role in large sets of high-quality photographs and paintings.

Sharon Gilaie-Dotan, Geraint Rees, Brian Butterworth and Marinella Cappelletti

It has been suggested that the human ability to process number and time both rely on common magnitude mechanisms, yet for time this commonality has mainly been investigated in the sub-second rather than longer time ranges. Here we examined whether number processing is associated with timing in time ranges greater than a second. Specifically, we tested long duration estimation abilities in adults with a developmental impairment in numerical processing (dyscalculia), reasoning that any such timing impairment co-occurring with dyscalculia may be consistent with joint mechanisms for time estimation and number processing. Dyscalculics and age-matched controls were tested on supra-second temporal estimation (12 s), a difficulty-matched non-temporal control task, as well as mathematical abilities. Consistent with our hypothesis, dyscalculics were significantly impaired in supra-second duration estimation but not in the control task. Furthermore, supra-second timing ability positively correlated with mathematical proficiency. All participants reported that they used counting to estimate time, although no specific instructions were given with respect to counting. These results suggest that numerical processing and supra-second temporal estimation share common mechanisms. However, since this conclusion is also based on subjective observations, further work needs to be done to determine whether mathematical impairment co-occurs with supra-second time estimation impairment when counting is not involved in and is objectively controlled for during supra-second timing. We hypothesize that counting, that does not develop normally in dyscalculics, might underlie and adversely affect dyscalculics’ supra-second time estimation performance, rather than an impairment of a magnitude mechanism or the internal clock pacemaker.

Vijay Mohan K. Namboodiri, Stefan Mihalas and Marshall G. H. Shuler

William J. Matthews, Devin B. Terhune, Hedderik van Rijn, David M. Eagleman, Marc A. Sommer and Warren H. Meck

David J. Brown, Andrew J. R. Simpson and Michael J. Proulx

Sensory substitution devices such as The vOICe convert visual imagery into auditory soundscapes and can provide a basic ‘visual’ percept to those with visual impairment. However, it is not known whether technical or perceptual limits dominate the practical efficacy of such systems. By manipulating the resolution of sonified images and asking naïve sighted participants to identify visual objects through a six-alternative forced-choice procedure (6AFC) we demonstrate a ‘ceiling effect’ at 8 × 8 pixels, in both visual and tactile conditions, that is well below the theoretical limits of the technology. We discuss our results in the context of auditory neural limits on the representation of ‘auditory’ objects in a cortical hierarchy and how perceptual training may be used to circumvent these limitations.

Timing & Time Perception Review is the forum for all psychophysical, neuroimaging, pharmacological, computational, and theoretical advances on the topic of timing and time perception in humans and other animals. Timing & Time Perception Review has a multidisciplinary approach to the synergy of: Neuroscience and Philosophy for understanding the concept of time, Cognitive Science and Artificial Intelligence for adapting basic research to artificial agents, Psychiatry, Neurology, Behavioral and Computational Sciences for neuro-rehabilitation and modeling of the disordered brain, to name just a few.

Need support prior to submitting your manuscript? Make the process of preparing and submitting a manuscript easier with Brill's suite of author services, an online platform that connects academics seeking support for their work with specialized experts who can help.