Browse results

You are looking at 1 - 10 of 2,510 items for :

  • All accessible content x
  • Primary Language: English x
Clear All

Series:

Edited by Bernard Feltz, Marcus Missal and Andrew Cameron Sims

Neuroscientists often consider free will to be an illusion. Contrary to this hypothesis, the contributions to this volume show that recent developments in neuroscience can also support the existence of free will. Firstly, the possibility of intentional consciousness is studied. Secondly, Libet’s experiments are discussed from this new perspective. Thirdly, the relationship between free will, causality and language is analyzed. This approach suggests that language grants the human brain a possibility to articulate a meaningful personal life. Therefore, human beings can escape strict biological determinism.

Giulia Perina, Ana I. Camacho, Joel Huey, Pierre Horwitz and Annette Koenders

The stygofaunal family of Bathynellidae, is an excellent group to study the processes that shape diversity and distribution, since they have unknown surface or marine relatives, high level of endemism, and limited dispersal abilities. Recent research on Bathynellidae in Western Australia (Pilbara) has uncovered new taxa with unexpected distributions and phylogenetic relationships, but the biogeographical processes that drive their diversification on the continent are still unclear. By exploring the diversity, distribution, and divergence time of Bathynellidae in a setting such as the perched and isolated aquifers of the Cleaverville Formation in the north of the De Grey River catchment (Pilbara), we aim to test the hypothesis that vicariance has shaped the distribution of this family, specifically if one or multiple vicariant events were involved. We analysed the specimens collected from perched water in different plateaus of the Cleaverville Formation, combining morphological and molecular data from mitochondrial and nuclear genes. We described two new species and genera (Anguillanella callawaensis gen. et sp. nov. and Muccanella cundalinensis gen. et sp. nov.), and two additional taxa are recognised using morphology and/or Automatic Barcode Gap Discovery and Poisson Tree Processes species delimitation methods. New genera and species result restricted to isolate perched aquifers on single plateaus and their distributions, phylogenetic relationships, and divergence time estimates support multiple vicariant events and ancient allopatric speciation.

Yifan Chen, Qian Bai, Funan Ruan and Shuchai Su

The Pistacia chinensis Bunge is traditionally dioecious, and the female trees are more required to grow in practice for oil seed production. The discovery of monoecious P. chinensis Bunge in North China provided good raw materials to study the sex differentiation process. The objective of this study was to identify the differently expressed proteins in flower buds in two key sex differentiation phases in monoecious P. chinensis Bunge. Morphological observation and paraffin section were used to determine the key phenophases, and label-free quantitative technique was used for proteomic analysis. The results showed that the proteins related to oxidative stress resistance up-regulated while proteins involved in photosynthesis down-regulated during the female primordium differentiation in bisexual flower buds of the monoecious P. chinensis Bunge in early March, while proteins related to oxidative stress resistance, ribosome activity, and photosynthetic function up-regulated during the male primordium differentiation in bisexual flower buds of the monoecious P. chinensis Bunge in late May. The most up-regulated proteins all involved in the photosynthesis pathway in both kind of flower buds in late May compared to those in early March, and the down-regulated proteins all involved in the ribosome pathway. The identified differentially expressed proteins such as the Cu/Zn superoxide dismutases may be possible molecular markers for sex determination in monoecious P. chinensis Bunge.

Maliheh Pirayesh Shirazinejad, Mansour Aliabadian and Omid Mirshamsi

The white wagtail (Motacilla alba) species complex with its distinctive plumage in separate geographical areas can serve as a model to test evolutionary hypotheses. Its extensive variety in plumage, despite the genetic similarity between taxa, and the evolutionary events connected to this variety are poorly understood. Therefore we sampled in the breeding range of the white wagtail: 338 individuals were analyzed from 74 areas in the Palearctic and Mediterranean. We studied the white wagtail complex based on two mitochondrial DNA markers to make inferences about the evolutionary history. Our phylogenetic trees highlight mtDNA sequences (ND2, CR), and one nuclear marker (CHD1Z), which partly correspond to earlier described clades: the northern Palearctic (clade N); eastern and central Asia (clade SE); south-western Asia west to the British Isles (clade SW); and Morocco (clade M). The divergence of all clades occurred during the Pleistocene. We also used ecological niche modelling for three genetic lineages (excluding clade M); results showed congruence between niche and phylogenetic divergence in these clades. The results of the white wagtail ancestral area reconstruction showed the influence of dispersal on the distribution and divergence of this complex species. The most important vicariance event for the white wagtail complex may have been caused by the Gobi and Taklamakan deserts. We conclude that the ancestral area of the white wagtail complex was probably in the Mediterranean, with its geography having a considerable effect on speciation processes.

Series:

Edited by Masamichi Sasaki

Miguel A. Meca, Pilar Drake and Daniel Martin

The polychaete Oxydromus okupa lives in association with the bivalves Scrobicularia plana and Macomopsis pellucida in the intertidal of Río San Pedro (CI = Cádiz Intertidal) and adjacent to CHipiona (CH) harbour, and in the subtidal of the Bay of Cádiz (CS = Cádiz Subtidal). We analyse these populations morphometrically, ecologically (including infestation characteristics) and genetically (intertidal populations, 16S and ITS-1 genes). We consider “host”, “environment” and the combined “host and environment” as possible factors of interpopulation variability. Morphometry revealed three well-defined clusters for CI, CH and CS, showing intergroup phenotypic differences ranging from 35 to 50%. Hosts shell lengths ranged between 26 and 36 mm for S. plana and 20 and 28 mm for M. pellucida. The infestation of small M. pellucida by juvenile O. okupa suggests they show an active size segregation behaviour. The intertidal seems to be less favourable (infestation rate <25% vs. up to 65% in the subtidal), and did not show recent bottleneck events. Overall, CI and CH were genetically homogeneous, but showed a significant divergence (one dominant haplotype in each host species), suggesting host shift as being a soft barrier to gene flow. Most characters related with host-entering varied among populations, suggesting symbiotic behaviour to play a key role in reducing panmixia and leading to the initial phases of a speciation process in sympatric symbiotic populations. Polyxeny and symbiotic behaviour in O. okupa seem thus to be underlying mechanisms contributing to its great phenotypic variety, marked ecological differences, and genetic divergence.