Browse results

You are looking at 1 - 5 of 5 items for :

  • Mathematics Education x
  • Teacher Education x
  • Primary Language: English x

Edited by Cynthia Nicol, Jo-ann Archibald Q’um Q’um Xiiem, Florence Glanfield and A. J. Sandy Dawson

Living Culturally Responsive Mathematics Education with/in Indigenous Communities explores challenges and possibilities across international contexts, involving Indigenous and non-Indigenous scholars, teachers and Elders responding to calls for improved education for all Indigenous students. Authors from Australia, New Zealand, United States, Micronesia, and Canada explore the nature of culturally responsive mathematics education. Chapters highlight the importance of relationships with communities and the land, each engaging critically with ideas of culturally responsive education, exploring what this stance might mean and how it is lived in local contexts within global conversations. Education researchers and teacher educators will find a living pathway where scholars, educators, youth and community members critically take-up culturally responsive teachings and the possibilities and challenges that arise along the journey.

Contributors are: Dayle Anderson, Dora Andre-Ihrke, Jo-ann Archibald Q'um Q'um Xiiem, Maria Jose Athie-Martinez, Robin Averill, Trevor Bills, Beatriz A. Camacho, A. J. (Sandy) Dawson, Dwayne Donald, Herewini Easton, Tauvela Fale, Amanda Fritzlan, Florence Glanfield, Jodie Hunter, Roberta Hunter, Newell Margaret Johnson, Julie Kaomea, Robyn Jorgensen, Jerry Lipka, Lisa Lunney Borden, Dora Miura, Sharon Nelson-Barber, Cynthia Nicol, Gladys Sterenberg, Marama Taiwhati, Pania Te Maro, Jennifer S. Thom, David Wagner, Evelyn Yanez, and Joanne Yovanovich.

The Language of Mathematics Education

An Expanded Glossary of Key Terms and Concepts in Mathematics Teaching and Learning

Series:

Shannon W. Dingman, Laura B. Kent, Kim K. McComas and Cynthia C. Orona

The Language of Mathematics Education: An Expanded Glossary of Key Terms and Concepts in Mathematics Teaching and Learning offers mathematics teachers, mathematics education professionals and students a valuable resource in which common terms are defined and expounded upon in short essay format. The shared vocabulary and terminology relating to mathematics teaching and learning, and used by mathematics educators is an essential component of work conducted in the field.

The authors provide an overview of more than 100 terms commonly used in mathematics teaching and learning. Each term is defined and is followed by a short overview of the concept under discussion that includes several bibliographic references the reader can use for further investigation. In addition to terms specific to the domain of mathematics education, select key terms common across all fields of education (e.g., curriculum, epistemology, metacognition) are included. The goal for this book is to serve as a resource for those entering the field as they navigate the language and terminology of mathematics education and as an asset for more established professionals who wish to gain additional insights into these ideas.

Series:

Edited by Dianne Siemon, Tasos Barkatsas and Rebecca Seah

The relationship between research and practice has long been an area of interest for researchers, policy makers, and practitioners alike. One obvious arena where mathematics education research can contribute to practice is the design and implementation of school mathematics curricula. This observation holds whether we are talking about curriculum as a set of broad, measurable competencies (i.e., standards) or as a comprehensive set of resources for teaching and learning mathematics. Impacting practice in this way requires fine-grained research that is focused on individual student learning trajectories and intimate analyses of classroom pedagogical practices as well as large-scale research that explores how student populations typically engage with the big ideas of mathematics over time. Both types of research provide an empirical basis for identifying what aspects of mathematics are important and how they develop over time.

This book has its origins in independent but parallel work in Australia and the United States over the last 10 to 15 years. It was prompted by a research seminar at the 2017 PME Conference in Singapore that brought the contributors to this volume together to consider the development and use of evidence-based learning progressions/trajectories in mathematics education, their basis in theory, their focus and scale, and the methods used to identify and validate them. In this volume they elaborate on their work to consider what is meant by learning progressions/trajectories and explore a range of issues associated with their development, implementation, evaluation, and on-going review. Implications for curriculum design and future research in this field are also considered.

Contributors are: Michael Askew, Tasos Barkatsas, Michael Belcher, Rosemary Callingham, Doug Clements, Jere Confrey, Lorraine Day, Margaret Hennessey, Marj Horne, Alan Maloney, William McGowan, Greg Oates, Claudia Orellana, Julie Sarama, Rebecca Seah, Meetal Shah, Dianne Siemon, Max Stephens, Ron Tzur, and Jane Watson.

Series:

Edited by Tasos Barkatsas, Nicky Carr and Grant Cooper

The second decade of the 21st century has seen governments and industry globally intensify their focus on the role of science, technology, engineering and mathematics (STEM) as a vehicle for future economic prosperity. Economic opportunities for new industries that are emerging from technological advances, such as those emerging from the field of artificial intelligence also require greater capabilities in science, mathematics, engineering and technologies. In response to such opportunities and challenges, government policies that position STEM as a critical driver of economic prosperity have burgeoned in recent years. Common to all these policies are consistent messages that STEM related industries are the key to future international competitiveness, productivity and economic prosperity.
This book presents a contemporary focus on significant issues in STEM teaching, learning and research that are valuable in preparing students for a digital 21st century. The book chapters cover a wide spectrum of issues and topics using a wealth of research methodologies and methods ranging from STEM definitions to virtual reality in the classroom; multiplicative thinking; STEM in pre-school, primary, secondary and tertiary education, opportunities and obstacles in STEM; inquiry-based learning in statistics; values in STEM education and building academic leadership in STEM.
The book is an important representation of some of the work currently being done by research-active academics. It will appeal to academics, researchers, teacher educators, educational administrators, teachers and anyone interested in contemporary STEM Education related research in a rapidly changing globally interconnected world.

Contributors are: Natalie Banks, Anastasios (Tasos) Barkatsas, Amanda Berry, Lisa Borgerding, Nicky Carr, Io Keong Cheong, Grant Cooper, Jan van Driel, Jennifer Earle, Susan Fraser, Noleine Fitzallen, Tricia Forrester, Helen Georgiou, Andrew Gilbert, Ineke Henze, Linda Hobbs, Sarah Howard, Sylvia Sao Leng Ieong, Chunlian Jiang, Kathy Jordan, Belinda Kennedy, Zsolt Lavicza, Tricia Mclaughlin, Wendy Nielsen, Shalveena Prasad, Theodosia Prodromou, Wee Tiong Seah, Dianne Siemon, Li Ping Thong, Tessa E. Vossen and Marc J. de Vries.

Edited by Ángel Gutiérrez and Paulo Boero

"This volume is a compilation of the research produced by the International Group for the Psychology of Mathematics Education (PME) since its creation, 30 years ago. It has been written to become an essential reference for Mathematics Education research in the coming years.
The chapters offer summaries and synthesis of the research produced by the PME Group, presented to let the readers grasp the evolution of paradigms, questions, methodologies and most relevant research results during the last 30 years. They also include extensive lists of references. Beyond this, the chapters raise the main current research questions and suggest directions for future research.
The handbook is divided into five sections devoted to the main research domains of interest to the PME Group. The first three sections summarize cognitively oriented research on learning and teaching specific content areas, transversal areas, and based on technology rich environments. The fourth section is devoted to the research on social, affective, cultural and cognitive aspects of Mathematics Education. Finally, the fifth section includes two chapters summarizing the PME research on teacher training and professional life of mathematics teachers.
The volume is the result of the effort of 30 authors and 26 reviewers. Most of them are recognized leading PME researchers with great expertise on the topic of their chapter. This handbook shall be of interest to both experienced researchers and doctoral students needing detailed synthesis of the advances and future directions of research in Mathematics Education, and also to mathematics teacher trainers who need to have a comprehensive reference as background for their courses on Mathematics Education.