Jie Wang, Liping Ning, Qi Gao, Shiye Zhang and Quan Chen

Edited by Lloyd A. Donaldson

ABSTRACT

The subject of this study is the structure and composition of buried Phoebe zhennan wood. Through comparative studies of the anatomy and composition with modern undegraded wood, the objective was to understand any changes that have taken place in the P. zhennan buried wood samples. The P. zhennan buried wood can be identified by wood structure characteristics and volatile components analysis. It is required that the microstructural features are identical to those of modern P. zhennan wood; simultaneously, the volatile components of the wood must contain six characteristic compounds with the same peak retention time. The P. zhennan buried wood sample which was used in the experiment was dated 8035–7945 BP (95.4% probability). Further research showed that the cell wall of P. zhennan buried wood had been damaged, the hemicellulose was heavily degraded but there was no obvious degradation of crystalline cellulose. Moisture was present mainly as free water and large amounts of mineral elements such as Fe, and Ni were detected in the ash of P. zhennan buried wood. Both the buried and modern wood of P. zhennan were acidic.

Adya P. Singh, Yoon Soo Kim and Ramesh R. Chavan

Edited by Lloyd A. Donaldson

ABSTRACT

This review presents information on the relationship of ultrastructure and composition of wood cell walls, in order to understand how wood degrading bacteria utilise cell wall components for their nutrition. A brief outline of the structure and composition of plant cell walls and the degradation patterns associated with bacterial degradation of wood cell walls precedes the description of the relationship of cell wall micro- and ultrastructure to bacterial degradation of the cell wall. The main topics covered are cell wall structure and composition, patterns of cell wall degradation by erosion and tunnelling bacteria, and the relationship of cell wall ultrastructure and composition to wood degradation by erosion and tunnelling bacteria. Finally, pertinent information from select recent studies employing molecular approaches to identify bacteria which can degrade lignin and other wood cell wall components is presented, and prospects for future investigations on wood degrading bacteria are explored.

Lloyd Donaldson, Adya Singh, Laura Raymond, Stefan Hill and Uwe Schmitt

ABSTRACT

Douglas-fir (Pseudotsuga menziesii) has distinctly colored heartwood as a result of extractive deposition during heartwood formation. This is known to affect natural durability and treatability with preservatives, as well as other types of wood modification involving infiltration with chemicals. The distribution of extractives in sapwood and heartwood of Douglas-fir was studied using fluorescence microscopy. Several different types of extractive including flavonoids, resin acids, and tannins were localized to heartwood cell walls, resin canals, and rays, using autofluorescence or staining of flavonoids with Naturstoff A reagent. Extractives were found to infiltrate the cell walls of heartwood tracheids and were also present to a lesser extent in sapwood tracheid cell walls, especially in regions adjacent to the resin canals. Förster resonance energy transfer measurements showed that the accessibility of lignin lining cell wall micropores to rhodamine dye was reduced by about 50%, probably as a result of cell wall-bound tannin-like materials which accumulate in heartwood relative to sapwood, and are responsible for the orange color of the heartwood. These results indicate that micro-distribution of heartwood extractives affects cell wall porosity which is reduced by the accumulation of heartwood extractives in softwood tracheid cell walls.

Shuqin Zhang, Rong Liu, Caiping Lian, Junji Luo, Feng Yang, Xianmiao Liu and Benhua Fei

Edited by Lloyd A. Donaldson

ABSTRACT

The flow of xylem sap in bamboo is closely associated with metaxylem vessels and the pits in their cell walls. These pits are essential components of the watertransport system and are key intercellular pathways for transverse permeation of treatment agents related to utilization. Observations of metaxylem vessels and pits in moso bamboo culm internodes were carried out using environmental scanning electron microscopy (ESEM) to examine mature bamboo fractures and resin casts. The results showed that bordered pits were distributed in relation to adjacent cell types with most pits between vessels and parenchyma cells and few pits between vessels and fibers of the bundle sheath. The pit arrangement was mainly opposite to alternate with apertures ranging from oval, flattened elliptical, or slit-like to coalescent. The vertical dimensions of inner apertures and outer apertures of the pits were about 0.9-2.7 μm and 1.1-3.8 μm, respectively. According to the relative position, and size difference between the inner apertures and their borders, the bordered pit shapes were categorized into three types, namely PI, PII and PIII (Fig. 3C). Half-bordered pit pairs were observed between vessels and direct contact parenchyma cells. Most vessel elements possessed simple perforation plates.

Mathew R. Vanner

Edited by Elisabeth A. Wheeler

ABSTRACT

Angiosperm wood from the Miocene Landslip Hill silcrete, Southland, New Zealand is described. It is characterised by solitary vessels of two distinct size classes; rays of two size classes alongside aggregate rays; simple perforation plates; and axial parenchyma in tangential bands up to three cells wide. The wood has features similar to Casuarinaceae and is described here as a new species, Casuarinoxylon ildephonsi. The fossils were collected as isolated fragments of wood; there is no directly associated cladode or cone material although isolated fragments of these are common elsewhere in the Landslip Hill silcrete. This is the second record of fossil Casuarinaceae wood from New Zealand and the first sample to be anatomically described. Currently, Casuarinaceae does not occur in New Zealand. Casuarinoxylon ildephonsi would have grown in a warm temperate to subtropical climate on an open deltaic floodplain.

Mélanie Tanrattana, Jean-François Barczi, Anne-Laure Decombeix, Brigitte Meyer-Berthaud and Jonathan Wilson

Edited by Lisa Boucher

ABSTRACT

The origin of xylem in the Silurian was a major step in plant evolution, leading to diverse growth forms with various mechanical and hydraulic properties. In the fossil record, these properties can only be investigated using models based on extant plant physiology. Regarding hydraulics, previous studies have considered either the properties of a single tracheid or of a set of independent tubes. Here, we use the analogy between the flow of water under tension in a plant and an electrical circuit to develop an extension of Wilson’s single tracheid model to the tissue scale. Upscaling to the tissue-level allows considering wood as a heterogeneous tissue by taking into account differences in tracheid density and the presence of rays. The new model provides a more biologically accurate representation of fossil wood hydraulic properties. The single tracheid and new tissue models are applied to two conspecific specimens of Callixylon (Progymnospermopsida, Archeopteridales) from the Late Devonian of Morocco. Differences are shown at the tissue level that cannot be suspected at the single tracheid level. Callixylon represents the first trees with a conifer-like wood and is a major component of Late Devonian fl oras worldwide. Our results show that the anatomical disparity of its wood might have led to hydraulic plasticity, allowing growth in various environmental conditions. More generally, the new tissue-model suggests that the various combinations of tracheid and ray sizes present in Palaeozoic plants might have led to a higher variety of ecophysiologies than suspected based solely on the properties of individual tracheids.

Juan Guo, Lin Xiao, Liuyang Han, Hao Wu, Tao Yang, Shunqing Wu and Yafang Yin

Edited by Lloyd A. Donaldson

ABSTRACT

The relationship between the cell wall ultrastructure of waterlogged wooden archeological artifacts and the state of water bound to cell walls and free in voids is fundamental to develop consolidating and drying technologies. Herein, a lacquer-wooden ware and a boat-coffin dating 4th century BC were selected as representative artifacts to study. Wood anatomy results indicated that they belonged to Idesia sp. and Machilus sp., respectively. They exhibited a typical spongy texture, as revealed by SEM observations, and their water contents had increased significantly. Solid state NMR, Py-GC/MS, imaging FTIR microscopy and 2D-XRD results demonstrated that the deterioration resulted from the partial cleavages of both polysaccharide backbones and cellulose hydrogen-bonding networks, almost complete elimination of acetyl side chains of hemicellulose, the partial depletion of β-O-4 interlinks, as well as oxidation and demethylation/demethoxylation of lignin. These further caused the disoriented arrangement of crystalline cellulose, and the decrease in cellulose crystallite dimensions and crystallinity. In consequence, mesopores and macropores formed, and the number of moisture-adsorbed sites and their accessibility increased. Moreover, results on free water deduced by the changes of pore structure and the maximum monolayer water capacity achieved by the GAB model indicated that water in waterlogged archeological wooden artifacts was mainly free water in mesopores.

A. Boura, G. Saulnier, D. De Franceschi, B. Gomez, V. Daviero-Gomez, D. Pons, G. Garcia, N. Robin, J-M. Boiteau and X. Valentin

Thousands of silicified wood fragments were recently collected from the middle Cenomanian of Vienne in western France at less than 10 km away from a historical locality where in 1870 the French geologist Alphonse Le Touzé de Longuemar reported silicified wood. The plant assemblage is very diverse, and includes several species of ferns, conifers, and angiosperms. We describe and discuss the systematic affinities of a new vesselless angiosperm. Many of its characters are shared by extant and fossil Winteraceae. Nevertheless, the absence of uniseriate rays makes the anatomy of these specimens unique. Its combination of characters justifies the establishment of a new genus of vesselless fossil angiosperm wood of uncertain affinity, Sherwinoxylon gen. nov.

Editors IAWA List of Microscopic Bark Features

Patrik Ahvenainen

ABSTRACT

Many endangered tropical hardwoods are commonly used in electric guitars. In order to find alternative woods, the current electric guitar woods need to be studied and classified as most research in this field has focused on acoustic instruments. Classification was done based on luthier literature, woods used in commercially available electric guitars, commercially available tonewoods and by interviewing Finnish luthiers. Here, the electric guitar woods are divided into three distinct classes based on how they are used in the guitar: low-density wood used in the body only (alder, poplar, basswood, ash), medium-density wood used in the body and neck (maple and mahogany), and high-density wood used in the fretboard only (rosewood and ebony). Together, these three classes span a wide range of anatomical and mechanical properties, but each class itself is limited to a relatively narrow parameter space. Statistically significant differences between these classes and the average hardwoods exist in the wood anatomy (size and organization of vessels, fibres, rays and axial parenchyma), in the mechanical properties (density, elastic modulus, Janka hardness, etc.) and in the average price per volume. In order to find substitute woods for a certain guitar wood class, density and elastic modulus can already be used to rule out most wood species. Based on principal component analysis of the elastomechanical and anatomical properties of commercially available hardwoods, few species are similar to the low- and high-density class woods. However, for all of the three electric guitar wood classes, non-endangered wood species are already commercially available from tonewood retailers that match the class characteristics presented here.